Bac S – Nouvelle Calédonie – Novembre 2017

Nouvelle Calédonie – Novembre 2017

Bac TS – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

Partie A : En utilisant le bus

  1. On veut calculer $p\left(12 \pp T_B \pp 14\right)=\dfrac{14-12}{15-12}=\dfrac{2}{3}$
    $\quad$
  2. La durée moyenne du trajet est $E\left(T_B\right)=\dfrac{12+15}{2}=13,5$ min $=13$min $30$s
    $\quad$

Partie B : En utilisant son vélo

  1. On veut calculer $p\left(T_V\pp 14\right)=0,5$ car $\mu=14$.
    $\quad$
  2. D’après la calculatrice $p\left(12\pp Tv\pp 14\right)\approx 0,409$
    $\quad$

Partie C : En jouant aux dés

  1. La probabilité d’obtenir 1 ou 2 avec le dé est $\dfrac{2}{6}=\dfrac{1}{3}$.
    Un arbre pondéré représentant la situation est donc :
    D’après la formule des probabilités totales on a :
    $\begin{align*} p(C)&=p(B\cap C)+p(V\cap V)\\
    &=\dfrac{1}{3}\times \dfrac{2}{3}+\dfrac{2}{3}\times 0,409 \\
    &\approx 0,49
    \end{align*}$
    $\quad$
  2. On veut calculer :
    $\begin{align*} p_C(B)&=\dfrac{p(C\cap B)}{p(C)} \\
    &=\dfrac{\dfrac{1}{3}\times \dfrac{2}{3}}{0,49} \\
    &\approx 0,45
    \end{align*}$
    $\quad$

Ex 2

Exercice 2

  1. $\lim\limits_{x \to 0^+} \ln x=-\infty$ donc $\lim\limits_{X \to 0^+} \left(\ln x\right)^2=+\infty$
    $\lim\limits_{X \to 0^+} \dfrac{1}{x}=+\infty$ donc $\lim\limits_{X \to 0^+} f(x)=+\infty$.
    $\quad$
  2. a.
    $\begin{align*} 4\left(\dfrac{\ln\left(\sqrt{x}\right)}{\sqrt{x}}\right)^2 &=4\left(\dfrac{\dfrac{1}{2}\ln x}{\sqrt{x}}\right)^2 \\
    &=4\times \dfrac{\dfrac{1}{4}\left(\ln x\right)^2}{x} \\
    &=f(x)
    \end{align*}$
    $\quad$
    b. $\lim\limits_{x \to +\infty} \sqrt{x}=+\infty$ et $\lim\limits_{X \to +\infty} \dfrac{\ln X}{X}=0$ donc $\lim\limits_{x \to +\infty} \dfrac{\ln\left(\sqrt{x}\right)}{\sqrt{x}}=0$
    Ainsi $\lim\limits_{x \to +\infty} =0$.
    $\quad$
  3. a.
    $\begin{align*} f'(x)&=\dfrac{2x\times \dfrac{1}{x}\times \ln x-\left(\ln x\right)^2}{x^2} \\
    &=\dfrac{2\ln x-\left(\ln x\right)^2}{x^2} \\
    &=\dfrac{\ln(x)\left(2-\ln(x)\right)}{x^2}
    \end{align*}$
    $\quad$
    b. $2-\ln(x)=0 \ssi x=\e^2$ et $2-\ln(x)>0 \ssi 2>\ln(x)\ssi \e^2>x$
    Le signe de $f'(x)$ ne dépend que du signe de $\ln(x)\left(2-\ln(x)\right)$.
    On obtient ainsi le tableau de signe suivant :
    $\quad$
    c. $\ln(1)=0$ donc $f(1)=0$
    $f\left(\e^2\right)=\dfrac{\ln\left(\e^2\right)^2}{\e^2}=\dfrac{2^2}{\e^2}=\dfrac{4}{\e^2}$
    $\quad$
  4. La fonction $f$ est continue (car dérivable) et strictement décroissante sur l’intervalle $]0;1]$.
    $\lim\limits_{x \to 0^+}f(x)=+\infty$ et $f(1)=0$
    Donc $1\in [0;+\infty[$
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires), l’équation $f(x)=1$ possède une unique solution $\alpha$ sur l’intervalle $]0;1]$.
    Sur l’intervalle $[1;+\infty[$ on a $f(x)\pp \dfrac{4}{\e^2}<1$. L’équation $f(x)=1$ ne possède donc pas de solution sur cet intervalle.
    $\quad$
    Cela signifie par conséquent que l’équation $f(x)=1$ possède une unique solution $\alpha$ sur $]0;+\infty[$ et $\alpha \in ]0,49;0,50[$ d’après la calculatrice.
    $\quad$

Ex 3

Exercice 3

Partie A

Proposition A : Fausse

La fonction $f$ est positive sur l’intervalle $\left[0;\ln(2)\right]$. On veut donc calculer :
$\begin{align*}I&=\displaystyle \int_0^{\ln(2)} f(x)\dx \\
&=\left[2\e^x-\dfrac{1}{2}\e^{2x}\right]_0^{\ln 2} \\
&=2\times 2-\dfrac{1}{2}\times 2^2-\left(2-\dfrac{1}{2}\right) \\
&=\dfrac{1}{2}\\
&\neq 1
\end{align*}$

$\quad$

Proposition B vraie

La fonction $f_n$ est dérivable sur $\R$ en tant que somme de fonctions dérivables sur cet intervalle.
$\begin{align*} {f_n}'(x)&=2n\e^x-2\e^{2x} \\
&=2\e^x\left(n-\e^x\right)
\end{align*}$
La fonction exponentielle est strictement positive donc ${f_n}'(x)=0 \ssi n=\e^x \ssi x=\ln(n)$

$f\left(\ln(n)\right)=2n\times n-n^2=n^2$

$\quad$

 

 

Ex 4

Exercice 4

  1. a. $z_{n+4}=\dfrac{1+\ic}{(1-\ic)^n(1-\ic)^4}=\dfrac{1+\ic}{-4(1-\ic)^n}=\dfrac{-1}{4}z_n$
    Par conséquent $\dfrac{z_{n+4}}{z_n}=-\dfrac{1}{4}$.
    $\quad$
    b. Un argument de $\dfrac{z_{n+4}}{z_n}$ est donc $\pi$.
    Or $\left(\vect{OA_n},\vect{OA_{n+4}}\right)=$arg$\left(\dfrac{z_{n+4}}{z_n}\right)+2k\pi=\pi+2k\pi$
    Les points $O,A_n$ et $A_{n+4}$ sont donc alignés.
    $\quad$
  2. $|1+\ic|=\sqrt{2}$ donc $1+\ic=\sqrt{2}\left(\dfrac{\sqrt{2}}{2}+\dfrac{\sqrt{2}}{2}\ic\right)=\sqrt{2}\e^{\ic\pi/4}$
    De même $1-\ic=\sqrt{2}\e^{-\ic\pi/4}$
    Ainsi $z_n=\dfrac{\sqrt{2}\e^{\ic\pi/4}}{\left(\sqrt{2}\e^{-\ic\pi/4}\right)^n}=\sqrt{2}^{1-n}\e^{\ic(n+1)\pi/4}$
    $z_n$ est réel si, et seulement si, $n+1=4k$ avec $k\in \Z$
    si, et seulement si, $n=4k-1$ avec $k\in \Z$
    $\quad$

Ex 5 obl

Exercice 5 

Candidats n’ayant pas suivi l’enseignement de spécialité

Partie A

  1. On peut saisir $=5/4*B3-B2/4$
    $\quad$
  2. On obtient le tableau suivant :
    $\begin{array}{|c|c|c|}
    \hline
    &\text{A}&\text{B}\\
    \hline
    1&n&u_n\\
    \hline
    2&0&3\\
    \hline
    3&1&6\\
    \hline
    4&2&\boldsymbol{6,75}\\
    \hline
    5&3&\boldsymbol{6,938}\\
    \hline
    6&4&\boldsymbol{6,984}\\
    \hline
    7&5&\boldsymbol{6,996}\\
    \hline
    \end{array}$
    $\quad$
  3. Il semblerait donc que la suite $\left(u_n\right)$ converge vers $7$.
    $\quad$

Partie B : Étude de la suite

  1. a. Pour tout entier naturel $n$ on a :
    $\begin{align*} v_{n+1}&=u_{n+2}-\dfrac{1}{4}u_{n+1}\\
    &=\dfrac{5}{4}u_{n+1}-\dfrac{1}{4}u_n-\dfrac{1}{4}u_{n+1}\\
    &=u_{n+1}-\dfrac{1}{4}u_n\\
    &=v_n
    \end{align*}$
    La suite $\left(v_n\right)$ est donc constante et $v_0=u_1-\dfrac{u_0}{4}=\dfrac{21}{4}$.
    $\quad$
    b. Ainsi, pour tout entier naturel $n$ on a :
    $\dfrac{21}{4}=u_{n+1}-\dfrac{1}{4}u_n \ssi u_{n+1}=\dfrac{1}{4}u_n+\dfrac{21}{4}$.
    $\quad$
  2. a. Initialisation : Si $n=0$. On a $u_0=3$ et $u_1=6$ donc $u_0<u_1<15$
    La propriété est vraie au rang $0$
    $\quad$
    Hérédité : On suppose la propriété vraie au rang $n$ : $u_n<u_{n+1}<15$
    Montrons qu’elle est encore vraie au rang $n+1$, c’est-à-dire que $u_{n+1}<u_{n+2}<15$
    $\begin{align*} u_n<u_{n+1}<15 &\ssi \dfrac{1}{4}u_n<\dfrac{1}{4}u_{n+1}<\dfrac{15}{4} \\
    &\ssi \dfrac{1}{4}u_n+\dfrac{21}{4}<\dfrac{1}{4}u_{n+1}+\dfrac{21}{4}<\dfrac{15}{4}+\dfrac{21}{4} \\
    &\ssi u_{n+1}<u_{n+2}<9<15
    \end{align*}$
    La propriété est donc vraie au rang $n+1$
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Par conséquent, pour tout entier naturel $n$ on a $u_n<u_{n+1}<15$.
    $\quad$
    b. La suite $\left(u_n\right)$ est croissante et majorée par $15$; elle est donc convergente.
    $\quad$
  3. a. Pour tout entier naturel $n$ on a :
    $\begin{align*} w_n&=u_{n+1}-7 \\
    &=\dfrac{1}{4}u_n+\dfrac{21}{4}-7\\
    &=\dfrac{1}{4}u_n-\dfrac{7}{4} \\
    &=\dfrac{1}{4}\left(u_n-7\right) \\
    &=\dfrac{1}{4}w_n
    \end{align*}$
    La suite $\left(w_n\right)$ est donc géométrique de raison $\dfrac{1}{4}$ et de premier terme $w_0=3-7=-4$
    $\quad$
    b. Ainsi pour tout entier naturel $n$ on a $w_n=-4\times \left(\dfrac{1}{4}\right)^n=-\left(\dfrac{1}{4}\right)^{n-1}$
    Or $w_n=u_n-7$ donc $u_n=w_n+7=7-\left(\dfrac{1}{4}\right)^{n-1}$
    $\quad$
    c. $-1<\dfrac{1}{4}<1$ donc $\lim\limits_{n \to +\infty} \left(\dfrac{1}{4}\right)^{n-1}=0$.
    Par conséquent $\lim\limits_{n \to +\infty} u_n=7$.
    $\quad$

Ex 5 spé

Exercice 5

Candidats ayant suivi l’enseignement de spécialité

  1. a. On a $\begin{cases} b_1=0,3\times 1~000+0,5\times 1~500\\c_1=-0,5\times 1~000+1,3\times 1~500\end{cases}$ soit $\begin{cases} b_1=1~050\\c_1=1~450\end{cases}$
    Ainsi $U_1=\begin{pmatrix}1~050\\1~450\end{pmatrix}$
    $\quad$
    b. Pour tout entier naturel $n$ on a :
    $\begin{cases} b_{n+1}=0,3b_n+0,5c_n\\c_{n+1}=-0,5b_n+1,3c_n\end{cases} \ssi \begin{pmatrix}b_{n+1}\\c_{n+1}\end{pmatrix}=\begin{pmatrix}0,3&0,5\\-0,5&1,3\end{pmatrix}\times \begin{pmatrix}b_n\\c_n\end{pmatrix}$ $\ssi U_{n+1}AU_n$.
    $\quad$
  2. a. $Q$ est la matrice inverse de $P$ donc
    $\begin{align*} PQ=\begin{pmatrix}1&0\\0&1\end{pmatrix} &\ssi \begin{pmatrix}1&0\\1+a&1\end{pmatrix}=\begin{pmatrix}1&0\\0&1\end{pmatrix} \\
    &\ssi 1+a=0 \\
    &\ssi a=-1
    \end{align*}$
    $\quad$
    b. Montrons par récurrence sur $n$ que $A^n=PT^nQ$.
    Initialisation : il est admis que $A=PTQ$. La propriété est donc vraie au rang $1$.
    $\quad$
    Hérédité : On suppose la propriété vraie au rang $n$ : $A^n=PT^nQ$
    Montrons qu’elle est vraie au rang suivant c’est-à-dire $A^{n+1}=PT^{n+1}Q$
    $\begin{align*} A^{n+1}&=A^nA\\
    &=PT^nQPTQ \\
    &=PT^nTQ\\
    &=PT^{n+1}Q
    \end{align*}$
    La propriété est donc vraie au rang $n+1$.
    $\quad$
    Conclusion : La propriété est vraie au rang $1$ et est héréditaire.
    Par conséquent, pour tout entier naturel $n$ non nul on a $A^n=PT^nQ$.
    $\quad$
    c. Initialisation : Si $n=1$ on a :
    $\begin{pmatrix}0,8&0,5\times 1\times 1\\0&0,8\end{pmatrix}=\begin{pmatrix}0,8&0,5\\0&0,8\end{pmatrix}=T$
    La propriété est donc vraie au rang $1$
    $\quad$
    Hérédité : On suppose que la propriété est vraie au rang $n$ : $T^n=\begin{pmatrix}0,8^n&0,5n\times 0,8^{n-1}\\0&0,8^n\end{pmatrix}$.
    Montrons qu’elle est vraie au rang suivant, c’est-à-dire que $T^{n+1}=\begin{pmatrix}0,8^{n+1}&0,5(n+1)\times 0,8^{n}\\0&0,8^{n+1}\end{pmatrix}$
    $\begin{align*} T^{n+1}&=T^nT \\
    &=\begin{pmatrix}0,8^n&0,5n\times 0,8^{n-1}\\0&0,8^n\end{pmatrix} \times \begin{pmatrix}0,8&0,5\\0&0,8\end{pmatrix} \\
    &=\begin{pmatrix} 0,8^{n+1}+0&0,5\times 0,8^{n}+0,5n\times 0,8^n\\0&0,8^{n+1}\end{pmatrix} \\
    &=\begin{pmatrix}0,8^{n+1}&0,5\times 0,8^{n}(1+n)\\0&0,8^{n+1}\end{pmatrix}
    \end{align*}$
    La propriété est donc vraie au rang $n+1$.
    $\quad$
    Conclusion : La propriété est vraie au rang $1$ et est héréditaire.
    Par conséquent, pour tout entier naturel $n$ non nul on a :$T^n=\begin{pmatrix}0,8^n&0,5n\times 0,8^{n-1}\\0&0,8^n\end{pmatrix}$.
    $\quad$
  3. L’algorithme permet de dire qu’en 2040 le nombre de buses et celui de campagnols seront inférieurs ou égaux à $2$ (ce qui est très bas).
    $\quad$
  4. a. Pour tout entier naturel $n$ non nul on a :
    $b_n=1~000\times 0,8n+\dfrac{625}{2}n\times 0,8^n$ et $c_n=1~500\times 0,8^n+\dfrac{625}{2}n\times 0,8^n$
    On a $-1<0,8<1$ donc $\lim\limits_{n \to +\infty} 0,8^n=0$
    On a admis que, pour tout entier naturel $n$ non nul on a :
    $n \pp 10 \times 1,1^n \ssi n \times 0,8^n \pp 10 \times 0,88^n$
    Or $-1<0,88<1$ donc $\lim\limits_{n \to +\infty} 0,88^n=0$
    Ainsi $\lim\limits_{n \to +\infty}  b_n=0$ et $\lim\limits_{n \to +\infty} c_n=0$
    $\quad$
    b. Les mesures effectuées permettent de dire que, pour tout entier naturel $n$ non nul, on a $b_n \pg 50$ et $c_n \pg 50$ ce qui contredit le fait que les limites respectives des suites sont nulles.
    Le modèle proposé ne paraît donc pas cohérent.
    $\quad$

Énoncé

Télécharger (PDF, 58KB)

Si l’énoncé ne s’affiche pas directement rafraîchissez l’affichage.