1ère – Cours – Fonctions polynômes du second degré

Fonctions polynômes du second degré

I Fonctions polynôme du second degré

Définition 1 :On appelle fonction polynôme du second degré toute fonction $P$ définie sur $\R$ par $P(x)=ax^2+bx+c$ où $a,b$ et $c$ sont des réels tels que $a\neq 0$.

Remarque : On parle également de fonction polynomiale du second degré ou de degré $2$.

Exemples :

$\bullet $ $P$ définie sur $\R$ par $P(x)=2x^2-3x+5$ est une fonction polynôme du second degré. $a=2, b=-3$ et $c=5$.
$\bullet $ $P$ définie sur $\R$ par $P(x)=x^2+2$ est une fonction polynôme du second degré. $a=1, b=0$ et $c=2$.
$\bullet $ $P$ définie sur $\R$ par $P(x)=-x^2+5x$ est une fonction polynôme du second degré. $a=-1, b=5$ et $c=0$.
$\bullet $ $P$ définie sur $\R$ par $P(x)=4x^3-3x^2+4x-1$ n’est pas une fonction polynôme du second degré. Il s’agit en fait d’une fonction polynôme du troisième degré.
$\bullet$ $P$ définie sur $\R$ par $P(x)=4x+2$ n’est pas une fonction polynôme du second degré. Il s’agit d’un polynôme du premier degré (ou fonction affine).
$\bullet$ $P$ définie sur $\R$ par $f(x)=x^2+2x-\dfrac{1}{x}$ n’est pas une fonction polynôme du second degré.

Définition 2 : On appelle forme canonique d’une fonction polynôme du second degré, une expression algébrique de la forme $a(x-\alpha)^2+\beta$.

Exemple :
$\begin{align*} 2(x-1)^2+3 &= 2\left(x^2-2x+1\right)+3\\
&=2x^2-4x+2+3 \\
&=2x^2-4x+5
\end{align*}$
Par conséquent $2(x-1)^2+3$ est la forme canonique de la fonction polynôme du second degré $P$ définie sur $\R$ par $P(x)=2x^2-4x+5$.

Propriété 1 : Toute fonction polynomiale du second degré possède une forme canonique.
Si, pour tous réels $x$, on a $P(x)=ax^2+bx+c$ alors $P(x)=a(x-\alpha)^2+\beta$ avec $\alpha=-\dfrac{b}{2a}$ et $\beta =P(\alpha)$.
Preuve Propriété 1

On a, pour tous réels $x$, $P(x)=ax^2+bx+c$.
Puisque $a\neq 0$, on peut donc écrire $P(x)=a\left(x^2+\dfrac{b}{a}x+\dfrac{c}{a}\right)$.

On constate que l’expression $x^2+\dfrac{b}{a}x$ est le début d’une identité remarquable.
En effet :
$$\begin{align*} \left(x+\dfrac{b}{2a}\right)^2&=x^2+2\times x \times\dfrac{b}{2a}+\left(\dfrac{b}{2a}\right)^2 \\
&=x^2+\dfrac{b}{a}x+\dfrac{b^2}{4a^2}
\end{align*}$$

Par conséquent $x^2+\dfrac{b}{a}x=\left(x+\dfrac{b}{2a}\right)^2-\dfrac{b^2}{4a^2}$

Donc
$$\begin{align*} P(x)&=a\left(\left(x+\dfrac{b}{2a}\right)^2-\dfrac{b^2}{4a^2}+\dfrac{c}{a}\right) \\\\
&=a\left(x+\dfrac{b}{2a}\right)^2 – \dfrac{b^2}{4a}+c \\\\
&=a\left(x+\dfrac{b}{2a}\right)^2 – \dfrac{b^2}{4a}+\dfrac{4ac}{4a} \\\\
&=a\left(x+\dfrac{b}{2a}\right)^2 – \dfrac{b^2-4ac}{4a}
\end{align*}$$

On pose $\alpha=-\dfrac{b}{2a}$ et $\beta=- \dfrac{b^2-4ac}{4a}$.

Ainsi $P(x)=a(x-\alpha)^2+\beta$.

On constate que $P(\alpha)=a(\alpha-\alpha)^2+\beta=\beta$.

[collapse]

$\quad$

Conséquence : Une fonction polynôme de second degré possède donc :
– une forme développée : $P(x)=ax^2+bx+c$;
– une forme canonique : $P(x)=a(x-\alpha)^2+\beta$;
Dans certains cas, elle possède également une forme factorisée : $P(x)=a\left(x-x_1\right)\left(x-x_2\right)$.

$\quad$


$\quad$

II Variations d’une fonction polynôme du second degré

Propriété 2 : On considère une fonction polynôme du second degré $P$ définie sur $\R$ par $P(x)=ax^2+bx+c$. On pose $\alpha=-\dfrac{b}{2a}$.
$\bullet$ Si $a>0$ alors la fonction $P$ est décroissante sur $]-\infty;\alpha]$ et croissante sur $[\alpha;+\infty[$.
$\bullet$ Si $a<0$ alors la fonction $P$ est croissante sur $]-\infty;\alpha]$ et décroissante sur $[\alpha;+\infty[$.
Preuve Propriété 2

On a vu, qu’on pouvait écrire $P(x)=a(x-\alpha)^2+\beta$ avec $\alpha = -\dfrac{b}{2a}$ et $\beta=P(\alpha)$.

On considère deux réels $x_1$ et $x_2$ tels que $x_1<x_2$.

$$\begin{align*} P\left(x_1\right)-P\left(x_2\right) &=a\left(x_1-\alpha\right)^2+\beta-\left(a\left(x_2-\alpha\right)^2+\beta\right) \\
&=a\left(\left(x_1-\alpha\right)^2-\left(x_2-\alpha\right)^2\right) \\
&=a\left(x_1-\alpha-x_2+\alpha\right)\left(x_1-\alpha+x_2-\alpha\right) \\
&=a\left(x_1-x_2\right)\left(x_1+x_2-2\alpha\right)
\end{align*}$$

On sait que $x_1<x_2$. Donc $x_1-x_2<0$.

On va considérer les deux intervalles suivants : $]-\infty;\alpha]$ et $[\alpha;+\infty[$.

$\bullet$ si $x_1<x_2\le \alpha$ alors $x_1+x_2 \le \alpha +\alpha $ soit $x_1+x_2 \le 2\alpha$.
Par conséquent $x_1+x_2-2\alpha \le 0$.

$\bullet$ si $\alpha \le x_1<x_2$ alors $x_1+x_2 \ge \alpha +\alpha $ soit $x_1+x_2 \ge 2\alpha$.
Par conséquent $x_1+x_2-2\alpha \ge 0$.

Si $a>0$

$\bullet$ si $x_1<x_2\le \alpha$ alors $a\left(x_1+x_2-2\alpha\right) \le 0$ et $x_1-x_2<0$ donc $P\left(x_1\right)-P\left(x_2\right) \ge 0$ : La fonction $P$ est décroissante sur $]-\infty;\alpha]$.
$\bullet$ si $\alpha \le x_1<x_2$ alors $a\left(x_1+x_2-2\alpha\right) \ge 0$ et $x_1-x_2<0$ donc $P\left(x_1\right)-P\left(x_2\right) \le 0$ : La fonction $P$ est croissante sur $[\alpha;+\infty[$.

Si $a<0$

$\bullet$ si $x_1<x_2\le \alpha$ alors $a\left(x_1+x_2-2\alpha\right) \ge 0$ et $x_1-x_2<0$ donc $P\left(x_1\right)-P\left(x_2\right) \le 0$ : La fonction $P$ est croissante sur $]-\infty;\alpha]$.
$\bullet$ si $\alpha \le x_1<x_2$ alors $a\left(x_1+x_2-2\alpha\right) \le 0$ et $x_1-x_2<0$ donc $P\left(x_1\right)-P\left(x_2\right) \ge 0$ : La fonction $P$ est décroissante sur $[\alpha;+\infty[$.

[collapse]

$\quad$

On obtient ainsi ces tableaux de variations où $\beta = P\left(-\dfrac{b}{2a}\right)$ :

2nd - cours - 2nd degré - fig1 (1)2nd - cours - 2nd degré - fig2 (2)

Propriété 3 : La fonction $P$ atteint :
$\bullet$ un minimum en $-\dfrac{b}{2a}$ si $a>0$
$\bullet$ un maximum en $-\dfrac{b}{2a}$ si $a<0$

$\quad$

III Représentation graphique

Propriété 4 : On considère une fonction polynôme du second degré $P$ définie sur $\R$ par $P(x)=ax^2+bx+c$.

Dans un repère orthonormé, la représentation graphique de la fonction $P$ est une parabole et la droite d’équation $x=-\dfrac{b}{2a}$ est un axe de symétrie.
Le point $S$ de coordonnées $\left(-\dfrac{b}{2a};P\left(-\dfrac{b}{2a}\right)\right)$ est appelé sommet de la parabole.

2nd - cours - 2nd degré - fig3 (1)2nd - cours - 2nd degré - fig4

 

$\quad$