E3C – Séries technologiques – Automatismes – Janvier 2020

E3C – Automatismes

Séries technologiques

  1. $0,5\%$ de $12~641$ €
    $\quad$
    Correction Question 1

    $1\%$ de $12~641$ est égale à $126,41$€
    Donc $0,5\%$ de $12~641$ est égale à $63,205$
    $\quad$

    [collapse]

    $\quad$
  2. Développer $(2x+3)^2$.
    $\quad$
    Correction Question 2

    $\begin{align*} (2x+3)^2&=(2x)^2+2\times 2x\times 3+3^2\\
    &=4x^2+12x+9\end{align*}$
    $\quad$

    [collapse]

    $\quad$
  3. Donner un antécédent de $0$ par $f:x\mapsto (x+3)(x-1)$.
    $\quad$
    Correction Question 3

    On veut donc résoudre l’équation $(x+3)(x-1)=0$.
    Un produit de facteurs est nul si, et seulement si, l’un de ses facteurs au moins est nul.
    Ainsi $(x+3)(x-1)=0 \ssi x+3=0$ ou $x-1=0$.
    $\ssi x=-3$ ou $x=1$
    Les antécédents de $0$ par la fonction $f$ sont donc $-3$ et $1$.
    $\quad$

    [collapse]

    $\quad$
  4. Résoudre l’inéquation : $3-2x\pg 0$
    $\quad$
    Correction Exercice 4

    $3-2x\pg 0\ssi -2x\pg -3 \ssi x\pp \dfrac{3}{2}$
    L’ensemble solution est donc $\left]-\infty;\dfrac{3}{2}\right]$.
    $\quad$

    [collapse]

    $\quad$
  5. Soit $f(x)=ax^2$ où $a$ est un nombre réel.
    Donner la valeur de $a$ sachant que $f(-2)=10$.
    $\quad$
    Correction Question 5

    $f(-2)=4a$
    Ainsi $f(-2)=10 \ssi 4a=10 \ssi a=\dfrac{5}{2}$.
    $\quad$

    [collapse]

    $\quad$

    $\quad$
  6. Dans une classe de première, $42 \%$ des élèves sont des garçons et parmi eux, $4 \%$ sont internes.
    Donner le pourcentage de garçons internes.
    $\quad$
    Correction Question 6

    $\dfrac{42}{100}\times \dfrac{4}{100}=\dfrac{168}{10~000}=1,68\%$
    Le pourcentage de garçons internes est donc égale à $1,68\%$.
    $\quad$

    [collapse]

    $\quad$
  7. La population d’une ville de $1~520$ habitants baisse chaque année de $10\ %$.
    Donner l’arrondi à l’unité du nombre d’habitants au bout de $3$ ans.
    $\quad$
    Correction Question 7

    Au bout d’un an la population a baissé de $152$ habitants. Il reste donc $1~368$ habitants.
    La deuxième année la population a baissé d’environ $137$ habitants. Il reste donc $1231$ habitants
    La troisième année la population a baisse d’environ $123$ habitants. Il reste donc $1~108$ habitants
    $\quad$

    [collapse]

    $\quad$

La courbe ci-contre est la représentation graphique d’une fonction $f$ définie sur l’intervalle $[-6 ; 9]$. Cette fonction est celle qui est considérée dans les questions 8 à 10.
La droite passant par les points $A(0 ; -2)$ et $B(5 ; 0)$ est la représentation graphique d’une fonction affine $g$ définie sur $\R$.
Remarque : l’ordonnée du point $B$ a été modifiée pour correspondre à ce qui est donné sur le graphique.

 

  1. $f(-5)$ est égal à :
    $\quad$
    Correction Question 8

    D’après le graphique $f(-5)=1$.
    $\quad$

    [collapse]

    $\quad$
  2. Le nombre de solutions de l’équation $f(x)=-2$ est :
    $\quad$
    Correction Question 9

    La droite d’équation $y=-2$ coupe la courbe représentant la fonction $f$ en trois points.
    L’équation $f(x)=-2$ possède donc $3$ solutions.
    $\quad$

    [collapse]

    $\quad$
  3. $f$ est décroissante sur les intervalles :
    $\quad$
    Correction Question 10

    D’après le graphique, $f$ est décroissante sur les intervalles $[-5;-2]$ et $[5;9]$.
    $\quad$

    [collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

E3C – Séries technologiques – Probabilités – Janvier 2020

E3C – Probabilités

Séries technologiques

Les 500 élèves de Première d’un lycée se répartissent de la façon suivante : $$\begin{array}{|c|c|c|c|}
\hline
&\text{Filles}&\text{Garçons}&\text{TOTAL}\\
\hline
\text{Externes}&70&110&180\\
\hline
\text{Demi-pensionnaires}&180&120&300\\
\hline
\text{Internes}&10&10&20\\
\hline
\text{TOTAL}&260&240&500\\
\hline
\end{array}$$

  1. a. Calculer le pourcentage d’internes.
    $\quad$
    b. Calculer le pourcentage de filles demi-pensionnaires.
    $\quad$
  2. On interroge un élève au hasard parmi les $500$.
    Tous les élèves ont la même probabilité d’être interrogés.
    On considère les événements suivants :
    $F$ : « l’élève interrogé est une fille » ;
    $E$ : « l’élève interrogé est externe » ;
    $D$ : « l’élève interrogé est demi-pensionnaire » ;
    $I$ : « l’élève interrogé est interne ».
    Les résultats seront donnés sous forme de fractions irréductibles.
    a. Traduire par une phrase l’événement $D\cap \conj{F}$.
    $\quad$
    b. Calculer les probabilités $P\left(D\cap \conj{F}\right)$, $P\left(\conj{F}\right)$ et $P(E \cap F)$.
    $\quad$
    c. Calculer $P_E(F)$ et traduire le résultat par une phrase.
    $\quad$

$\quad$

Correction Exercice

  1. a. $\dfrac{20}{500}=0,04$
    Les internes représentent donc $4\%$ du nombre d’élèves de Première.
    $\quad$
    b. $\dfrac{180}{500}=0,36$
    Les filles demi-pensionnaires représentent donc $36\%$ du nombre d’élèves de Première.
    $\quad$
  2. a. $D\cap \conj{F}$ : « l’élève interrogé est un garçon demi-pensionnaire».
    $\quad$
    b. $P\left(D\cap \conj{F}\right)=\dfrac{120}{500}=\dfrac{6}{25}$
    $P\left(\conj{F}\right)=\dfrac{240}{500}=\dfrac{12}{25}$
    $P(E \cap F)=\dfrac{70}{500}=\dfrac{7}{50}$
    $\quad$
    c. $P_E(F)=\dfrac{70}{180}=\dfrac{7}{18}$
    La probabilité que l’élève interrogé soit une fille sachant qu’elle est externe est égale à $\dfrac{7}{18}$.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

E3C – Séries technologiques – Fonctions – Janvier 2020

E3C – Fonctions

Séries technologiques

Une entreprise fabrique et commercialise des trottinettes. La capacité maximale de production de l’entreprise est de $21$ trottinettes.
Le coût total de fabrication (en euros) de $x$ trottinettes est modélisé par la fonction $C$ définie par : $$C(x) = 2x^3-50x^2+452x$$
Le prix de vente est de $200$ € par trottinette.

  1. Calculer, pour $12$ objets fabriqués et vendus, le coût de fabrication, la recette et le bénéfice.
    $\quad$
  2. On note $R(x)$ et $B(x)$ la recette et le bénéfice pour $x$ trottinettes vendues.
    a. Exprimer $R(x)$.
    $\quad$
    b. Montrer que le bénéfice réalisé pour $x$ trottinettes vendues est : $$B(x)=-2x^3+50x^2-252x$$
    $\quad$
  3. a. Montrer que $B(x)=-2x(x-7)(x-18)$.
    $\quad$
    b. Étudier le signe de $B(x)$ sur l’intervalle $[0 ; 21]$ et interpréter le signe de $B(x)$ dans le contexte de l’exercice.
    $\quad$

$\quad$

Correction Exercice

  1. Le coût de fabrication est $C(12)=1~680$ €.
    La recette est $200\times 12 = 2~400$ €.
    Le bénéfice est $2~400-1~680=720$ €
    $\quad$
  2. a. On a $R(x)=200x$.
    $\quad$
    b. Le bénéfice réalisé pour $x$ trottinettes vendues est :
    $\begin{align*} B(x)&=R(x)-C(x)\\
    &=200x-\left(2x^3-50x^2+452x\right) \\
    &=200x-2x^3+50x^2-452x\\
    &=-2x^3+50x^2-252x\end{align*}$
    $\quad$
  3. a. Pour tout réel $x$ on a :
    $\begin{align*} -2x(x-7)(x-18)&=-2x\left(x^2-18x-7x+126\right) \\
    &=-2x\left(x^2-25x+126\right)\\
    &=-2x^3+50x^2-252x\\
    &=B(x)\end{align*}$
    $\quad$
    b. $2x=0 \ssi x=0$ et $2x>0 \ssi x>0$
    $x-7=0\ssi x=7$ et $x-7>0\ssi x>7$
    $x-18=0\ssi x=18$ et $x-18>0 \ssi x>18$
    On obtient alors le tableau de signes suivant :L’entreprise réalise donc un bénéfice si elle produit et vend entre $7$ et $18$ trottinettes.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

E3C – Séries technologiques – Fonctions – Janvier 2020

E3C – Fonctions

Séries technologiques

Une entreprise reconditionne des téléphones portables. Cette entreprise reconditionne entre $1~000$ et $6~000$ téléphones portables par mois. On note $x$ le nombre de téléphones sur un mois. Le bénéfice $B$ en euro réalisé par la vente de $x$ téléphones reconditionnés est donné par la fonction $B$ représentée ci-après.

On admet que $B(x) = -0,003x^2+30x-48~000$.

  1. . La courbe ci-dessous est la représentation graphique de la fonction $B$ sur l’intervalle $[1~000 ; 6~000]$.

    a. Pourquoi peut-on dire que cette courbe est portée par une parabole ? Justifier.
    $\quad$
    b. Déterminer graphiquement une valeur approchée du bénéfice maximal.
    $\quad$
  2. a. On désigne par $B’$ la fonction dérivée de la fonction $B$. Calculer $B'(x)$.
    $\quad$
    b. En déduire le tableau de variation de la fonction $B$ sur l’intervalle $[1~000 ; 6~000]$.
    $\quad$
    c. Recopier sur votre copie la fonction donnée ci-dessous et compléter la ligne $10$ de cette fonction afin qu’elle retourne la valeur exprimée en euros du bénéfice maximal.
    $\quad$

$$\begin{array}{|c|l|}
\hline
1 &\text{def beneficemax():}\\
\hline
2 &\hspace{1cm}\text{x=1 000}\\
\hline
4 &\hspace{1cm}\text{B = – 0.003*x**2+30*x -48 000}\\
\hline
5 &\hspace{1cm}\text{M = B}\\
\hline
6 &\hspace{1cm}\text{for x in range(1001, 6001):}\\
\hline
8 &\hspace{2cm}\text{B = – 0.003*x**2+30*x -48 000}\\
\hline
9 &\hspace{2cm}\text{if B>M :}\\
\hline
10 &\hspace{3cm}\text{M=$\ldots$}\\
\hline
12 &\hspace{1cm}\text{return M}\\
\hline
\end{array}$$

$\quad$

$\quad$

Correction Exercice

  1. a. La fonction $B$ est une fonction du second degré. Sa courbe représentative est donc portée par une parabole.
    $\quad$
    b. Graphiquement, le bénéfice maximal est environ égal à $27~000$€.
    $\quad$
  2. a. On a
    $\begin{align*} B'(x)&=-0,003\times 2x+30 \\
    &=-0,006x+30\end{align*}$
    $\quad$
    b. $-0,006x+30=0 \ssi -0,006x=-30 \ssi x=5~000$
    $-0,006x+30>0  \ssi -0,006x>-30 \ssi x<5~000$
    On obtient donc le tableau de variations suivant :
    $\quad$
    c. On obtient le code programme suivant :
    $$\begin{array}{|c|l|}
    \hline
    1 &\text{def beneficemax():}\\
    \hline
    2 &\hspace{1cm}\text{x=1 000}\\
    \hline
    4 &\hspace{1cm}\text{B = – 0.003*x**2+30*x -48 000}\\
    \hline
    5 &\hspace{1cm}\text{M = B}\\
    \hline
    6 &\hspace{1cm}\text{for x in range(1001, 6001):}\\
    \hline
    8 &\hspace{2cm}\text{B = – 0.003*x**2+30*x -48 000}\\
    \hline
    9 &\hspace{2cm}\text{if B>M :}\\
    \hline
    10 &\hspace{3cm}\text{M=B}\\
    \hline
    12 &\hspace{1cm}\text{return M}\\
    \hline
    \end{array}$$
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

 

E3C – Séries technologiques – Automatismes – Janvier 2020

E3C – Automatismes

Séries technologiques

  1. Exprimer en kilogrammes $\dfrac{5}{6}$ de $360$ kg.
    $\quad$
    Correction Question 1

    $\dfrac{5}{6}\times 360=5\times 60=300$
    $\quad$

    [collapse]

    $\quad$
  2. Développer $(2x+3)^2$.
    $\quad$
    Correction Question 2

    $\begin{align*} (2x+3)^2&=(2x)^2+2\times 2x\times 3+3^2\\
    &=4x^2+12x+9\end{align*}$
    $\quad$

    [collapse]

    $\quad$
    Remarque : Dans l’énoncé original il n’y avait pas le $^2$.
    $\quad$
  3. Donner un antécédent de $0$ par $f:x\mapsto (x+3)(x-1)$.
    $\quad$
    Correction Question 3

    On veut donc résoudre l’équation $(x+3)(x-1)=0$.
    Un produit de facteurs est nul si, et seulement si, l’un de ses facteurs au moins est nul.
    Ainsi $(x+3)(x-1)=0 \ssi x+3=0$ ou $x-1=0$.
    $\ssi x=-3$ ou $x=1$
    Les antécédents de $0$ par la fonction $f$ sont donc $-3$ et $1$.
    $\quad$

    [collapse]

    $\quad$
  4. Résoudre l’inéquation : $3-2x\pg 0$
    $\quad$
    Correction Exercice 4

    $3-2x\pg 0\ssi -2x\pg -3 \ssi x\pp \dfrac{3}{2}$
    L’ensemble solution est donc $\left]-\infty;\dfrac{3}{2}\right]$.
    $\quad$

    [collapse]

    $\quad$
  5. Soit $f(x)=ax^2$ où $a$ est un nombre réel.
    Donner la valeur de $a$ sachant que $f(-2)=10$.
    $\quad$
    Correction Question 5

    $f(-2)=4a$
    Ainsi $f(-2)=10 \ssi 4a=10 \ssi a=\dfrac{5}{2}$.
    $\quad$

    [collapse]

    $\quad$

    $\quad$
  6. Dans une classe de première, $42 \%$ des élèves sont des garçons et parmi eux, $4 \%$ sont internes.
    Donner le pourcentage de garçons internes.
    $\quad$
    Correction Question 6

    $\dfrac{42}{100}\times \dfrac{4}{100}=\dfrac{168}{10~000}=1,68\%$
    Le pourcentage de garçons internes est donc égale à $1,68\%$.
    $\quad$

    [collapse]

    $\quad$

La courbe ci-contre est la représentation graphique d’une fonction $f$ définie sur l’intervalle $[-6 ; 9]$. Cette fonction est celle qui est considérée dans les questions 7 à 10.
La droite passant par les points $A(0 ; -2)$ et $B(5 ; 0)$ est la représentation graphique d’une fonction affine $g$ définie sur $\R$.
Remarque : l’ordonnée du point $B$ a été modifiée pour correspondre à ce qui est donné sur le graphique.

 

  1. $f(-5)$ est égal à :
    $\quad$
    Correction Question 7

    D’après le graphique $f(-5)=1$.
    $\quad$

    [collapse]

    $\quad$
  2. Le nombre de solutions de l’équation $f(x)=-2$ est :
    $\quad$
    Correction Question 8

    La droite d’équation $y=-2$ coupe la courbe représentant la fonction $f$ en trois points.
    L’équation $f(x)=-2$ possède donc $3$ solutions.
    $\quad$

    [collapse]

    $\quad$
  3. L’intervalle des valeurs de $f(x)$ est :
    $\quad$
    Correction Question 9

    D’après le graphique, $f(x)\in[-6;1]$.
    $\quad$

    [collapse]

    $\quad$
  4. Le coefficient directeur de la droite $(AB)$ est :
    $\quad$
    Correction Question 10

    $A$ et $B$ n’ont pas la même abscisse.
    Le coefficient directeur de la droite $(AB)$ est donc :
    $\begin{align*} m&=\dfrac{0-(-2)}{5-0} \\
    &=\dfrac{2}{5}\end{align*}$
    $\quad$

    [collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

E3C – Séries technologiques – Probabilités – Janvier 2020

E3C – Probabilités

Séries technologiques

Les $150$ salariés d’une entreprise se répartissent de la façon suivante :
$$\begin{array}{|c|c|c|c|}
\hline
&~~\text{Cadres}~~&\text{Employés}&~~\text{TOTAL}~~\\
\hline
\text{Parlent anglais}&20&9&29\\
\hline
\text{Ne parlent pas anglais}&40&81&121\\
\hline
\text{TOTAL}&60&90&150\\
\hline
\end{array}$$

  1. Dans cette première question, les résultats seront arrondis à $0,1\%$.
    a. Calculer le pourcentage des employés qui parlent anglais.
    $\quad$
    b. Calculer le pourcentage des cadres qui ne parlent pas anglais.
    $\quad$
  2. On interroge un salarié au hasard parmi les $150$.
    Tous les salariés ont la même probabilité d’être interrogés.
    On considère les événements suivants :
    $C$ : « le salarié interrogé est un cadre » ;
    $E$ : « le salarié interrogé est un employé » ;
    $A$ : « le salarié interrogé parle anglais » ;
    $\conj{A}$ : « le salarié interrogé ne parle pas anglais ».
    Les résultats seront donnés sous forme de fractions irréductible𝑠.
    a. Traduire par une phrase l’événement $C\cap \conj{A}$.
    $\quad$
    b. Calculer les probabilités $P\left(C\cap \conj{A}\right)$, $P\left(\conj{A}\right)$ et $P(E\cap A)$.
    $\quad$
    c. Calculer $P_A(E)$ et traduire le résultat par une phrase.$\quad$

$\quad$

Correction Exercice

  1. a. $\dfrac{29}{150}\approx 0,193$
    Ainsi, environ $19,3\%$ des salariés parlent anglais.
    $\quad$
    b. $\dfrac{40}{60}\approx  0,667$
    Environ $66,7\%$ des cadres ne parlent pas anglais.
    $\quad$
  2. a. $C\cap \conj{A}$ : « le salarié interrogé est un cadre qui ne parle pas anglais»
    $\quad$
    b. $P\left(C\cap \conj{A}\right)=\dfrac{40}{150}=\dfrac{4}{15}$
    $P\left(\conj{A}\right)=\dfrac{121}{150}$
    $P(E\cap A)=\dfrac{9}{150}=0,06$
    $\quad$
    c. On a :
    $P_A(E)=\dfrac{9}{29}$
    La probabilité qu’un salarié soit un employé sachant qu’il parle anglais est égale à $\dfrac{9}{29}$.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

E3C – Séries technologiques – Fonctions – Janvier 2020

E3C – Fonctions

Séries technologiques

Soit $f$ la fonction définie sur $[0;60~000]$ par $f(x)=-0,01(x-5~000)(x-50~000)$.
Sa représentation graphique est donnée ci-dessous.

  1. a. Développe et réduire $f(x)$.
    $\quad$
    b. En quelle valeur de $x$ le maximum de$f$𝑓 est-il atteint?
    $\quad$
  2. En 2022, une entreprise de l’agroalimentaire bio prévoit de produire $60~ 000$ tonnes d’un nouveau produit et de le vendre $800$ € la tonne. On estime que toute la production sera vendue et que le coût total de production, en euros, de $x$ tonnes de produit est $C(x)=0,01x^2+250x+2~500~000$.
    a. Exprimer la recette en euros pour 𝑥 tonnes de produit vendues.
    $\quad$
    b. En déduire que le bénéfice en euros pour $x$ tonnes de produit fabriquées et vendues est $B(x) = -0,01x^2+550x-2~500~000$, pour tout $x$ de $[0 ; 60~000]$.
    Remarque : Il y avait une coquille dans l’expression de $B(x)$ dans l’énoncé original.
    $\quad$
    c. Quelle quantité de produit l’entreprise doit-elle produire et vendre pour réaliser un bénéfice maximal ? Combien vaut ce bénéfice ?
    $\quad$

$\quad$

Correction Exercice

  1. a.
    $\begin{align*} f(x)&=-0,01(x-5~000)(x-50~000)\\
    &=-0,01\left(x^2-50~000x-5~000x+250~000~000\right)\\
    &=-0,01\left(x^2-55~000x+250~000~000\right)\\
    &=-0,01x^2+550x-2~500~000\end{align*}$
    $\quad$
    b. Le maximum d’une fonction polynôme du second degré est atteint pour $x=-\dfrac{b}{2a}$ soit ici pour $x=\dfrac{550}{0,02}=27~500$.
    $\quad$
  2. a. Pour $x$ tonnes de produit vendues la recette est égale à $800x$.
    $\quad$
    b. Le bénéfice est alors :
    $\begin{align*} B(x)&=800x-C(x)\\
    &=800x-0,01x^2-250x-2~500~000\\
    &=-0,01x^2+550x-2~500~000\end{align*}$
    $\quad$
    c. On a ainsi $B(x)=f(x)$.
    L’entreprise doit donc produire et vendre $27~500$ tonnes de produit pour réaliser un bénéfice maximal.
    De plus $B(27~000)=5~062~500$
    Le bénéfice maximal est alors égale à $5~062~500$ €.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

 

E3C – Séries technologiques – Fonctions – Janvier 2020

E3C – Fonctions

Séries technologiques

Le chiffre d’affaire en milliers d’euros d’une entreprise en fonction du temps est modélisé par la fonction $f(x) = 3x\left(48x-5x^2\right)$ où $x$ exprimé en années est le temps écoulé depuis le 1$\ier$ janvier 2020.

  1. a. Développer $f(x)$.
    $\quad$
    b. En déduire $f'(x)$.
    $\quad$
    c. On admet que $f'(x)=-3x(15x-96)$. Dresser le tableau de variation de $f$.
    $\quad$.
    d. En déduire le maximum de $f$ sur $[0;10]$.
    $\quad$
  2. Compléter la ligne $10$ du programme écrit en Python ci-dessous afin qu’en fin d’exécution la variable $\text{M}$ contienne une valeur approchée du chiffre d’affaire maximal exprimé en milliers d’euros.
    $$\begin{array}{|c|l|}
    \hline
    1 &\text{def chiffresaffairesmax( ):} \\
    \hline
    2 &\hspace{1cm} \text{x=0}\\
    \hline
    4 &\hspace{1cm}\text{B = 3*x*(48*x – 5*x**2)}\\
    \hline
    5 &\hspace{1cm}\text{M=B}\\
    \hline
    6 &\hspace{1cm}\text{for k in range(100):}\\
    \hline
    7 &\hspace{2cm}\text{x=x+0.1}\\
    \hline
    8 &\hspace{2cm}\text{B= 3*x*(48*x – 5*x**2)}\\
    \hline
    9 &\hspace{2cm}\text{if B>M :}\\
    \hline
    10 &\hspace{3cm}\text{M=$\ldots$}\\
    \hline
    12 &\hspace{1cm}\text{return M}\\
    \hline
    \end{array}$$

$\quad$

$\quad$

Correction Exercice

  1. a. On a :
    $\begin{align*} f(x)&=3x\left(48x-5x^2\right) \\
    &=144x^2-15x^3\end{align*}$
    $\quad$
    b. On a :
    $\begin{align*} f'(x)&=144\times 2x-15\times 3x^2 \\
    &=288x-45x^2\end{align*}$
    $\quad$
    c. $-3x=0 \ssi x=0$ et $-3x>0 \ssi x<0$
    $15x-96=0 \ssi 15x=96 \ssi x= 6,4$ et $15x-96>0 \ssi 15x>96 \ssi x>6,4$
    On obtient alors le tableau de variations suivant :

    $\quad$
    d. D’après le tableau de variations précédent le maximum de la fonction $f$ sur l’intervalle $[0;10]$ est $1~966,08$.
    $\quad$
  2. On peut écrire
    $$\begin{array}{|c|l|}
    \hline
    1 &\text{def chiffresaffairesmax( ):} \\
    \hline
    2 &\hspace{1cm} \text{x=0}\\
    \hline
    4 &\hspace{1cm}\text{B = 3*x*(48*x – 5*x**2)}\\
    \hline
    5 &\hspace{1cm}\text{M=B}\\
    \hline
    6 &\hspace{1cm}\text{for k in range(100):}\\
    \hline
    7 &\hspace{2cm}\text{x=x+0.1}\\
    \hline
    8 &\hspace{2cm}\text{B= 3*x*(48*x – 5*x**2)}\\
    \hline
    9 &\hspace{2cm}\text{if B>M :}\\
    \hline
    10 &\hspace{3cm}\text{M=B}\\
    \hline
    12 &\hspace{1cm}\text{return M}\\
    \hline
    \end{array}$$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

 

E3C – Séries technologiques – Automatismes – Janvier 2020

E3C – Automatismes

Séries technologiques

  1. À quelle évolution globale correspond une hausse de $20\%$ suivi d’une baisse de $30\%$ ?
    $\quad$
    Correction Question 1

    Le coefficient multiplicateur est :
    $\begin{align*} m&=\left(1+\dfrac{20}{100}\right)\left(1-\dfrac{30}{100}\right)\\
    &=1,2\times 0,7\\
    &=0,84\\
    &=1-0,16\end{align*}$
    Il s’agit donc, au global, d’une baisse de $16\%$.
    $\quad$

    [collapse]

    $\quad$
  2. Convertir $3,52$ h en heure minute seconde.
    $\quad$
    Correction Question 2

    $0,52$h $=0,52\times 60$ min $= 31,2$ min
    $0,2$ min $=0,2\times 60$ s $=12$ s.
    Ainsi $3,52$h $=3$h $31$min $12$s
    $\quad$

    [collapse]

    $\quad$
  3. Soit $(d)$ la droite d’équation réduite $y = -3x + 2$.
    Le point $B\left(\dfrac{1}{3};1\right)$ appartient-il à la droite $(d)$ ?
    $\quad$
    Correction Question 3

    $-3\times \dfrac{1}{3}+2=-1+2=1$ donc $B$ appartient à la droite $(d)$.
    $\quad$

    [collapse]

    $\quad$
  4. Développer et réduite l’expression suivante :
    $A(x)=(2x-1)^2+3x+2$
    $\quad$
    Correction Question 4

    $\begin{align*} A(x)&=(2x-1)^2+3x+2 \\
    &=(2x)^2-2\times 2x\times 1+1^2+3x+2\\
    &=4x^2-4x+1+3x+2\\
    &=4x^2-x+3\end{align*}$
    $\quad$

    [collapse]

    $\quad$
  5. Soit $f$ la fonction définie par la représentation graphique ci-dessous :

    Déterminer graphiquement l’ensemble des solutions de l’équation $f(x)=0$.
    $\quad$

    Correction Question 5

    L’ensemble solution cherché est, graphiquement, $\left\{-3;0;2;4\right\}$.
    $\quad$

    [collapse]

    $\quad$$\quad$
  6. Résoudre dans $\R$ l’inéquation d’inconnue $x$ suivante : $-2x-4\pg x+2$.
    $\quad$
    Correction Question 6

    $\begin{align*} -2x-4\pg x+2&\ssi -3x\pg 6\\
    &\ssi x\pp -2 \text{ on divise par $-3$ qui est négatif}\end{align*}$
    L’ensemble solution est donc $]-\infty;-2]$.
    $\quad$

    [collapse]

    $\quad$
  7. Quelle est la fraction irréductible égale à $\dfrac{3}{8}+\dfrac{5}{12}$?
    $\quad$
    Correction Question 7

    $\begin{align*}\dfrac{3}{8}+\dfrac{5}{12}&=\dfrac{9}{24}+\dfrac{10}{24} \\
    &=\dfrac{19}{24}\end{align*}$
    $\quad$

    [collapse]

    $\quad$
  8. On considère le calcul suivant : $0,003\times 1,5\times 10^8$.
    Donner le résultat en écriture scientifique.
    $\quad$
    Correction Question 8

    $\begin{align*}0,003\times 1,5\times 10^8&=3\times 10^{-3}\times 15\times 10^{-1}\times 10^8 \\
    &=45\times 10^4 \\
    &=4,5\times 10^5\end{align*}$
    $\quad$

    [collapse]

    $\quad$
  9. Résoudre dans $\R$ l’équation d’inconnue $x$ suivante : $$3x^2+1=13$$
    $\quad$
    Correction Question 9

    $\begin{align*}3x^2+1=13&\ssi 3x^2=12\\
    &\ssi x^2=4\\
    &\ssi x=2 \text{ ou } x=-2\end{align*}$
    $\quad$

    [collapse]

    $\quad$
  10. Les tailles des élèves d’une classe de terminale ont été représentées par l’histogramme ci‐dessous :

    Trois élèves ont une taille inférieure à $160$ cm.
    Déterminer le nombre d’élèves dans cette classe de terminale.
    $\quad$
    Correction Question 10

    $6$ “petits rectangles” représentent donc $3$ élèves.
    Donc $2$ “petits rectangles” représentent $1$ élève.
    Il y a par conséquent $33$ élèves dans cette classe.
    $\quad$

    [collapse]

    $\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

E3C – Séries technologiques – Probabilités – Janvier 2020

E3C – Probabilités

Séries technologiques

On interroge un groupe de $1~200$ étudiants titulaires d’un baccalauréat STMG et ayant poursuivi leurs études.

Parmi ces étudiants :

  • $60 \%$ de ces étudiants sont des filles, les autres sont des garçons.
  • $55 \%$ ont poursuivi leurs études en BTS.
  • $264$ étudiants sont inscrits à l’université.
  • La moitié des étudiants inscrits à l’université sont des garçons.
  • $45 \%$ des étudiants en BTS sont des garçons.
  1. Compléter, sans justification, le tableau croisé d’effectifs donné en annexe à remettre avec la copie.
    $\quad$
  2. Pour chaque étudiant interrogé les informations sont portées sur une fiche individuelle. On choisit une fiche au hasard parmi les $1~200$ renseignées. Chaque fiche a la même probabilité d’être choisie.
    On définit les évènements suivants :
    $N$ : « la fiche choisie concerne un étudiant de l’université ».
    $G$ : « la fiche choisie est celle d’un garçon ».
    a. Calculer la probabilité de l’évènement $N$ et celle de l’évènement $G$.
    $\quad$
    b. Définir par une phrase l’évènement $N \cap G$ puis calculer sa probabilité.
    $\quad$
    c. Définir par une phrase l’évènement $N \cup G$ puis calculer sa probabilité.
    $\quad$
    d. Calculer $P_G(N)$. Interpréter le résultat obtenu par une phrase.
    $\quad$

Annexe : Tableau croisé des effectifs

$$\begin{array}{|c|c|c|c|c|}
\hline
&~~~~\textbf{BTS}~~~~&\textbf{Université}&\begin{array}{c}\textbf{Autres}\\\textbf{formations}\end{array}&\textbf{Total}\\
\hline
\textbf{Filles}\rule[-6pt]{0pt}{18pt}&&&&\\
\hline
\textbf{Garçons}\rule[-6pt]{0pt}{18pt}&&&&\\
\hline
\textbf{Total}\rule[-6pt]{0pt}{18pt}&&264&&1~200\\
\hline
\end{array}$$

$\quad$

$\quad$

Correction Exercice

  1. On obtient alors le tableau suivant :
    $$\begin{array}{|c|c|c|c|c|}
    \hline
    &~~~~\textbf{BTS}~~~~&\textbf{Université}&\begin{array}{c}\textbf{Autres}\\\textbf{formations}\end{array}&\textbf{Total}\\
    \hline
    \textbf{Filles}\rule[-6pt]{0pt}{18pt}&363&132&225&720\\
    \hline
    \textbf{Garçons}\rule[-6pt]{0pt}{18pt}&297&132&51&480\\
    \hline
    \textbf{Total}\rule[-6pt]{0pt}{18pt}&660&264&276&1~200\\
    \hline
    \end{array}$$
    $\quad$
  2. a. On a $P(N)=\dfrac{264}{1~200}=0,22$
    $P(G)=1-0,6=0,4$
    $\quad$
    b. $N\cap G$ : « la fiche choisie concerne un garçon étudiant à l’université »
    $P(N\cap G)=\dfrac{132}{1200}=0,11$
    $\quad$
    C. $N\cup G$ : « la fiche choisie concerne un garçon ou un étudiant de l’université »
    $P(N\cup G)=\dfrac{480+132}{1200}=0,51$
    $\quad$
    d. On a donc  :
    $\begin{align*} P_G(N)&=\dfrac{132}{480} \\
    &=0,275\end{align*}$
    La probabilité que la fichée choisie soit celle d’un étudiant de l’université sachant que celle d’un garçon est égale à $0,275$.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence