E3C – Séries technologiques – Automatismes – Janvier 2020

E3C – Automatismes

Séries technologiques

  1. Calculer la masse correspondant à $\dfrac{2}{3}$ de $240$ grammes.
    $\quad$
    Correction Question 1

    $\dfrac{2}{3} \times 240 = 2\times 80=160$.
    Cela correspond donc à $160$ g.
    $\quad$

    [collapse]

    $\quad$
  2. Compléter : « augmenter de $0,3 \%$ revient à multiplier par …… »
    $\quad$
    Correction Question 2

    Cela revient à multiplier par $1+\dfrac{0,3}{100}=1,003$.
    $\quad$

    [collapse]

    $\quad$
  3. Compléter : « diminuer de …… $\%$ revient à multiplier par $0,86$ »
    $\quad$
    Correction Question 3

    $0,86=1-0,14$
    Donc « diminuer de $14\%$ revient à multiplier par $0,86$ »
    $\quad$

    [collapse]

    $\quad$
  4. Des mesures annuelles ont été relevées dans le tableau suivant :
    $$\begin{array}{|c|c|c|c|}
    \hline
    \text{années}&2015&2016&2017\\
    \hline
    \text{mesures}&&5,00&4,00\\
    \hline
    \end{array}$$
    a. Déterminer le taux d’évolution des mesures entre 2016 et 2017.
    $\quad$
    Correction Question 4.a.

    On a $\dfrac{4,00-5,00}{5,00}=-0,2$
    Il s’agit donc d’une baisse de $20\%$.
    $\quad$

    [collapse]

    $\quad$
    b. Sachant que le taux de 2015 à 2016 est $+25 \%$, calculer la mesure en 2015.
    $\quad$
    Correction Question 4.b.

    On appelle $x$ la mesure en 2015.
    On a donc $x\left(1+\dfrac{25}{100}\right)=5,00$
    Soit $1,25x=5,00$ et par conséquent $x=\dfrac{5,00}{1,25}=4,00$
    $\quad$.

    [collapse]

    $\quad$

    $\quad$

  5. Déterminer le taux global d’une hausse de $10 \%$ suivie d’une baisse de $20 \%$.
    $\quad$
    Correction Question 5

    Le coefficient multiplicateur global est :
    $\begin{align*} m&=\left(1+\dfrac{10}{100}\right)\left(1-\dfrac{20}{100}\right) \\
    &=1,1\times 0,8 \\
    &=0,88\\
    &=1-0,12\end{align*}$
    Il s’agit donc d’une baisse de $12\%$ soit un taux globale de $-12\%$.
    $\quad$

    [collapse]

    $\quad$
  6. Résoudre $2x-(2-x)=7$.
    $\quad$
    Correction Question 6

    $2x-(2-x)=7\ssi 2x-2+x=7 \ssi 3x=9\ssi x=3$
    La solution de l’équation est $3$.
    $\quad$

    [collapse]

    $\quad$
  7. Résoudre $(x+3)^2-8=0$.
    $\quad$
    Correction Question 7

    $(x+3)^2-8=0 \ssi x^2+6x+9-8=0\ssi
    x^2+6x+1=0$
    Le discriminant est $\Delta=36-4=32>0$
    Les solutions sont donc $\dfrac{-6-\sqrt{32}}{2}$ et $\dfrac{-6+\sqrt{32}}{2}$.
    $\quad$
    Autre méthode
    $(x+3)^2-8=0 \ssi (x+3)^2=8 \ssi x+3=\sqrt{8}$ ou $x+3=-\sqrt{8}$ $\ssi x=-3+\sqrt{8}$ ou $x=-3-\sqrt{8}$
    $\quad$

    [collapse]

    $\quad$
  8. Etudier le signe de $f(x)=4+3x$.
    $\quad$
    Correction Question 8

    $4+3x=0 \ssi 3x=-4 \ssi x=-\dfrac{4}{3}$
    $4+3x>0 \ssi 3x>-4 \ssi x>-\dfrac{4}{3}$
    Ainsi :
    – sur $\left]-\infty;-\dfrac{4}{3}\right[$ on a $f(x)<0$;
    – $f\left(-\dfrac{4}{3}\right)=0$;
    – sur $\left]-\dfrac{4}{3};+\infty\right[$ on a $f(x)>0$.
    $\quad$

    [collapse]

    $\quad$
  9. Etudier le signe de $h(x)=2x(5-2x)$.
    $\quad$
    Correction Question 9

    Un produit de facteurs est nul si, et seulement si, un de ses facteurs au moins est nul.
    $2x=0 \ssi x=0$
    $5-2x=0 \ssi -2x=-5 \ssi x=\dfrac{5}{2}$
    De plus $h(x)=10x-4x^2$
    $h$ est une fonction du second degré dont le coefficient principal est $a=-4<0$.
    Par conséquent :
    – sur $]-\infty;0[\cup\left]\dfrac{5}{2};+\infty\right[$ on a $h(x)<0$;
    – $h(0)=0$ et $h\left(\dfrac{5}{2}\right)=0$;
    – sur $\left]0;\dfrac{5}{2}\right[$ on a $h(x)>0$.
    $\quad$
    Remarque : On pouvait également réaliser un tableau de signes pour répondre à la question.
    $\quad$

    [collapse]

    $\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

E3C – Séries technologiques – Fonctions – Janvier 2020

E3C – Fonctions

Séries technologiques

Une chaîne de montage est constituée d’un tapis roulant et d’un plateau mobile verticalement sur lequel est placée une masse $m$.
On modélise la hauteur du plateau (en centimètres), à l’instant $t$ (en secondes) par la fonction $f$ définie sur $[0; 25]$ par : $f(t)=165-0,15t^2$.

 

  1. Calculer la hauteur du plateau au départ, c’est-à-dire à l’instant $t=0$ seconde.
    $\quad$
  2. a. Quelle est la nature de la courbe représentative de la fonction $f$ dans un repère orthonormé?
    $\quad$
    b. Déterminer la hauteur maximale du plateau et le temps auquel cette hauteur maximale est atteinte.
    $\quad$
  3. La hauteur du tapis roulant est $95$ cm. Déterminer à quel temps $t$, à $0,1$ seconde près, le plateau est à hauteur du tapis.
    $\quad$
  4. Sur le graphique donné en annexe on a placé les points $A$ et $B$ de la courbe représentative de la fonction $f$ d’abscisses respectives $25$ et $20$.
    Déterminer la pente de la droite $(AB)$.
    $\quad$

Annexe

 

$\quad$

$\quad$

Correction Exercice

  1. On a $f(0)=165$.
    Le plateau est situé à $165$ cm de haut au départ.
    $\quad$
  2. a. $f$ est une fonction du second degré. Elle est donc représentée par une parabole.
    $\quad$
    b. Le coefficient principal de la fonction $f$ est $a=-0,15<0$.
    Ainsi $f$ admet un maximum en $t_0=-\dfrac{b}{2a}=0$.
    La hauteur maximale du plateau est donc de $165$ cm. Elle est atteinte à l’instant $t=0$ seconde.
    $\quad$
  3. On veut résoudre l’équation :
    $\begin{align*} f(t)=95&\ssi 165-0,15t^2=95 \\
    &\ssi -0,15t^2=-70 \\
    &\ssi t^2=\dfrac{70}{0,15}\end{align*}$
    Puisque $t\in [0;25]$ alors la solution de l’équation est $\sqrt{\dfrac{70}{0,15}} \approx 21,6$.
    Le plateau est à la hauteur du tapis environ à l’instant $t=21,6$ seconde.
    $\quad$
  4. Graphiquement le point A a pour coordonnées $(25;71)$ et $B$ a pour coordonnées $(20;105)$.
    Ainsi la pente de la droite $(AB)$ est $\dfrac{105-71}{20-25}=-6,8$.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

E3C – Séries technologiques – Probabilités – Janvier 2020

E3C – Probabilités

Séries technologiques

L’annexe est à rendre avec la copie

Pour contacter une compagnie d’assurance, deux possibilités sont offertes : par mail ou par téléphone. Le responsable du pôle relation client décide de réaliser une enquête afin de savoir si les clients qui contactent la compagnie sont satisfaits.
À l’issue de l’enquête, réalisée auprès de 1000 clients qui ont contacté l’agence, les résultats sont les suivants :

  • $370$ ont envoyé un mail à l’agence,
  • parmi ceux-ci, $90 \%$ se sont déclarés satisfaits du traitement de leur demande,
  • parmi les clients qui ont téléphoné, $20 \%$ ont déclaré qu’ils n’étaient pas satisfaits de l’accueil.

On interroge au hasard un client. On considère les évènements suivants :

  • $M$ : Le client a contacté l’agence par mail,
  • $S$ : Le client est satisfait.

Les probabilités seront arrondies à $10^{-4}$, si nécessaire.

  1. Donner la valeur des probabilités: $P(M)$, $P_M(S)$ et $P_{\conj{M}}(S)$.
    $\quad$
  2. Compléter le tableau représentant la situation donnée en annexe.
    $\quad$
  3. Calculer la probabilité que le client ait envoyé un mail et qu’il ait été satisfait.
    $\quad$
  4. Le responsable a pour objectif qu’il y ait moins de $10\%$ des clients non satisfaits par le contact qu’ils ont eu. Cet objectif est-il atteint ?
    $\quad$
  5. Sachant que le client a été satisfait, quelle est la probabilité qu’il ait contacté l’agence par mail ?
    $\quad$

Annexe

$$\begin{array}{|c|c|c|c|}
\hline
&\begin{array}{l}\textbf{Contact par}\\\textbf{mail}\\
\boldsymbol{(M)}\end{array}&\begin{array}{l}\textbf{Contact par}\\\textbf{téléphone}\\
\boldsymbol{\left(\conj{M}\right)}\end{array}&\textbf{Total}\\
\hline
\textbf{Satisfait }\boldsymbol{(S)}\rule[-7pt]{0pt}{20pt}&&&\\
\hline
\textbf{Insatisfait }\boldsymbol{\left(\conj{S}\right)}\rule[-7pt]{0pt}{20pt}&&&\\
\hline
\textbf{Total}\rule[-7pt]{0pt}{20pt}&&&\phantom{1234}\boldsymbol{1~000}\phantom{1234}\\
\hline
\end{array}$$

$\quad$

$\quad$

Correction Exercice

  1. On a $P(M)=\dfrac{370}{1~000}=0,37$, $P_M(S)=0,9$ et  $P_{\conj{M}}(S)=1-0,2=0,8$.
    $\quad$
  2. On obtient le tableau suivant :
    $$\begin{array}{|c|c|c|c|}
    \hline
    &\begin{array}{l}\textbf{Contact par}\\\textbf{mail}\\
    \boldsymbol{(M)}\end{array}&\begin{array}{l}\textbf{Contact par}\\\textbf{téléphone}\\
    \boldsymbol{\left(\conj{M}\right)}\end{array}&\textbf{Total}\\
    \hline
    \textbf{Satisfait }\boldsymbol{(S)}\rule[-7pt]{0pt}{20pt}&333&504&837\\
    \hline
    \textbf{Insatisfait }\boldsymbol{\left(\conj{S}\right)}\rule[-7pt]{0pt}{20pt}&37&126&163\\
    \hline
    \textbf{Total}\rule[-7pt]{0pt}{20pt}&370&630&\phantom{1234}\boldsymbol{1~000}\phantom{1234}\\
    \hline
    \end{array}$$
    $\quad$
  3. On veut calculer :
    $\begin{align*} P(M\cap S)&=\dfrac{333}{1~000} \\
    &=0,333\end{align*}$
    La probabilité que le client ait envoyé un mail et qu’il ait été satisfait est égale à $0,333$.
    $\quad$
  4. On a $P\left(\conj{S}\right)=\dfrac{163}{1~000}>0,1$.
    L’objectif n’est donc pas atteint.
    $\quad$
  5. On veut calculer :
    $\begin{align*} P_S(M)&=\dfrac{333}{837}\\
    &\approx 0,397~8\end{align*}$
    La probabilité que le client ait contacté l’agence par mail sachant qu’il a été satisfait est environ égale à $0,397~8$.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

E3C – Séries technologiques – Fonctions – Janvier 2020

E3C – Fonctions

Séries technologiques

L’annexe est à rendre avec la copie

Soit la fonction $f$ définie pour tout réel $x$ par : $f(x)=0,1+0,9x^2-x^3$.

  1. Justifier que pour tout réel $x$, $f'(x)=x(1,8-3x)$.
    $\quad$
  2. a. Calculer $f(1)$ et $f'(1)$.
    $\quad$
    b. En déduire une équation de la tangente à la courbe de $f$ au point d’abscisse $1$.
    $\quad$
  3. La représentation graphique de la fonction $f$ est donnée en annexe.
    a. Donner les variations de la fonction $f$ par lecture graphique.
    $\quad$
    b. En utilisant les résultats de la question 2., construire sur ce graphique la tangente à la courbe de la fonction $f$ au point d’abscisse $1$.
    $\quad$

Annexe

$\quad$

$\quad$

Correction Exercice

  1. Pour tout réel $x$ on a :
    $\begin{align*} f'(x)&=0,9\times 2x-3x^2 \\
    &=1,8x-3x^2\\
    &=x(1,8-3x)\end{align*}$
    $\quad$
  2. a. On a $f(1)=0,1+0,9-1=0$
    $f'(1)=1\times (1,8-3)=-1,2$
    $\quad$
    b. Une équation de la tangente à la courbe représentant la fonction $f$ au point d’abscisse $1$ est de la forme $y=f'(1)(x-1)+f(1)$
    C’est-à-dire $y=-1,2(x-1)$ ou $y=-1,2x+1,2$.
    $\quad$
  3. a. Graphiquement, il semblerait que la fonction $f$ soit :
    – strictement décroissante sur $]-\infty;0]$;
    – strictement croissante sur $[0;0;6]$
    – strictement décroissante sur $[0,6;+\infty[$.
    $\quad$
    b. Une équation de cette tangente est $y=-1,2x+1,2$
    Si $x=0$ alors $y=1,2$
    Si $x=1$ alors $y=0$
    Cette droite passe donc par les points de coordonnées $(0;1,2)$ et $(1;0)$.

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

E3C – Séries technologiques – Automatismes – Janvier 2020

E3C – Automatismes

Séries technologiques

  1. Mettre sous la forme d’une fraction irréductible $\dfrac{3}{4}-\dfrac{7}{5}$.
    $\quad$
    Correction Question 1

    $\begin{align*}\dfrac{3}{4}-\dfrac{7}{5}&=\dfrac{15}{20}-\dfrac{28}{20} \\
    &=-\dfrac{13}{20}\end{align*}$
    $\quad$

    [collapse]

    $\quad$
  2. Donner l’écriture scientifique de $0,045~6$.
    $\quad$
    Correction Question 2

    $0,045~6=4,56\times 10^{-2}$
    $\quad$

    [collapse]

    $\quad$
  3. Compléter l’égalité $10^{-5}\times \ldots\ldots =10^8$.
    $\quad$
    Correction Question 3

    $10^{-5}\times 10^{13}=10^{8}$ car $-5+13=8$.
    $\quad$

    [collapse]

    $\quad$
  4. Développer l’expression $7x^2(4x-6)$.
    $\quad$
    Correction Question 4

    $7x^2(4x-6)=28x^3-42x$
    $\quad$

    [collapse]

    $\quad$
  5. Factoriser l’expression $(5x-3)(3x+1)+4x(5x-3)$.
    $\quad$
    Correction Question 5

    $\begin{align*} (5x-3)(3x+1)+4x(5x-3)&=(5x-3)\left[(3x+1)+4x\right] \\
    &=(5x-3)(7x+1)\end{align*}$
    $\quad$

    [collapse]

    $\quad$

    $\quad$

  6. Résoudre dans $\R$ l’équation $(2x-5)(-x+7) = 0$.
    $\quad$
    Correction Question 6

    Un produit de facteurs est nul si, et seulement si, un de ses facteurs au moins est nul.
    Donc $2x-5=0\ssi 2x=5 \ssi x=\dfrac{5}{2}$ ou $-x+7=0\ssi x=7$.
    Les solutions de l’équation sont donc $\dfrac{5}{2}$ et $7$.
    $\quad$

    [collapse]

    $\quad$
  7. Si $\dfrac{a}{b}=\dfrac{c}{d}$ alors $d=$
    $\quad$
    Correction Question 7

    $\dfrac{a}{b}=\dfrac{c}{d} \ssi ad=bc \ssi d=\dfrac{bc}{a}$
    $\quad$

    [collapse]

    $\quad$
  8. Calculer $40\%$ de $70$ €.
    $\quad$
    Correction Question 8

    $\dfrac{40}{100}\times 70=\dfrac{2~800}{100}=28$.
    $40\%$ de $70$ € représente donc $28$ €.
    $\quad$

    [collapse]

    $\quad$
  9. Un article est passé de $40$ € à $50$ €.
    Quel est le taux d’évolution en pourcentage de cet article ?
    $\quad$
    Correction Question 9

    On a $\dfrac{50-40}{40}=\dfrac{10}{40}=0,25$
    Le taux d’évolution est donc égal à $25\%$.
    $\quad$

    [collapse]

    $\quad$
  10. On a représenté une droite D dans le repère ci-dessous.

    Compléter par lecture graphique.
    L’équation réduite de la droite $D$ est : ………………………………….
    $\quad$
    Correction Question 10

    L’ordonnée à l’origine est $-3$.
    Pour chaque déplacement de $1$ unité vers la droite on descend de $3$ unités : le coefficient directeur est donc $-3$.
    L’équation réduite de $D$ est donc $y=-3x-3$.
    $\quad$

    [collapse]

    $\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

E3C – Séries technologiques – Fonctions – Janvier 2020

E3C – Fonctions

Séries technologiques

Une entreprise de recyclage peut produire au maximum $10$ tonnes de plastique recyclé par an. Elle revend la totalité de ce plastique recyclé au prix unitaire de $700$ € la tonne.
On rappelle que :

  • le coût moyen correspondant à la production de $x$ tonnes de plastique recyclé est défini par $C_M(x) = \dfrac{C_T(x)}{x}$, où $C_T(x)$ est le coût total pour la production de $x$ tonnes de plastique recyclé.
  • le coût marginal, noté $C_m(x)$, est le coût induit par la production d’une tonne de plastique recyclé supplémentaire lorsqu’on en a déjà produit $x$ tonnes.

Les courbes représentant les coûts moyen et marginal (en euro) en fonction de la quantité de plastique recyclé produite (en tonne) ainsi que le segment horizontal représentant le prix de vente unitaire sont tracés dans le repère donné en annexe à rendre avec la copie.
Répondre sur la copie aux questions suivantes avec la précision permise par le graphique.

  1. Déterminer le coût moyen issu de la production de $7$ tonnes de plastique recyclé et en déduire le coût total correspondant.
    $\quad$
  2. Quelle est la quantité de plastique recyclé que doit produire l’entreprise pour que le coût moyen soit minimal ? Donner ce coût moyen minimal et en déduire le coût total correspondant.
    $\quad$
  3. Donner le coût induit par la production d’une tonne supplémentaire lorsque l’entreprise a déjà produit $7$ tonnes de plastique recyclé.
    $\quad$

On considère que l’entreprise réalise des bénéfices lorsque le prix de vente unitaire est strictement supérieur au coût moyen.

  1. Déterminer graphiquement la quantité de plastique recyclé que doit produire et vendre l’entreprise pour réaliser des bénéfices.
    $\quad$

On admet que les bénéfices de l’entreprise sont maximum lorsque le coût marginal est égal au prix de vente unitaire.

  1. Déterminer graphiquement la quantité de plastique recyclé que doit produire et vendre l’entreprise pour que les bénéfices soient maximaux.
    $\quad$

Annexe 

$\quad$

$\quad$

Correction Exercice

  1. D’après le graphique, le coût moyen issu de la production de $7$ tonnes de plastique recyclé est de $500$ €.
    Le coût total est donc alors $500\times 7=3~500$ €.
    $\quad$
  2. D’après le graphique, le coût moyen est minimal quand l’entreprise recycle $5$ tonnes de plastique.
    Ce coût minimal est de $400$ €.
    $\quad$
  3. On veut déterminer $C_m(7)$.
    Graphiquement on lit $C_m(7)\approx 1~100$.
    Le coût induit par la production d’une tonne supplémentaire lorsque
    l’entreprise a déjà produit $7$ tonnes de plastique recyclé est environ égal à $1~100$ €.
    $\quad$
  4. Graphiquement, on lit que l’entreprise réalise des bénéfices lorsqu’elle recycle entre $2$ et $9$ tonnes de plastique.
    $\quad$
  5. Graphiquement, on lit que l’entreprise doit produire et vendre $6$ tonnes de plastique pour que les bénéfices soient maximaux.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

E3C – Séries technologiques – Fonctions – Janvier 2020

E3C – Fonctions

Séries technologiques

Un artisan produit des vases en terre cuite. Sa capacité de production est limitée à $60$ vases.
Le coût de production, en euros, dépend du nombre de vases produits.
Ce coût de production peut être modélisé par la fonction $C$ définie sur l’intervalle $[0 ; 60]$ par $$C(x)=x^2-10x+500$$

Un vase est vendu $50$ €. Les recettes, qui dépendent du nombre de vases produits et vendus, sont modélisées par une fonction $R$ définie sur l’intervalle $[0 ; 60]$.

  1. Calculer le coût et la recette réalisés lorsque l’artisan produit et vend $50$ vases.
    $\quad$
  2. Exprimer $R(𝑥)$ en fonction de $x$.
    $\quad$
  3. Le résultat, en euro, réalisé par l’artisan est modélisé par la fonction $B$ définie sur l’intervalle $[0 ; 60]$ par $B(x) = R(x)-C(x)$.
    a. Vérifier que $B(𝑥) = -(𝑥-10)(x-50)$.
    $\quad$
    b. Déterminer le nombre de vases à produire et à vendre pour que l’artisan réalise des bénéfices (c’est-à-dire pour que le résultat $B(x)$ soit positif).
    $\quad$
  4. On note $B’$ la fonction dérivée de la fonction $B$ sur l’intervalle $[0 ; 60]$.
    a. Déterminer $B'(x)$.
    $\quad$
    b. Dresser le tableau de variations de la fonction $B$ sur l’intervalle $[0 ; 60]$ et en déduire le nombre de vases à vendre pour réaliser un bénéfice maximum.
    $\quad$

$\quad$

Correction Exercice

  1. On a :
    $\begin{align*} C(50)&=50^2-10\times 50+500 \\
    &=2~500\end{align*}$
    et $R(50)=50\times 50=2~500$.
    Le coût de fabrication de $50$ vases est de $2~500$ € et la recette réalisée est également de $2~500$ €.
    $\quad$
  2. Pour tout $x\in [0;60]$ on a $R(x)=50x$.
    $\quad$
  3. a. Pour tout $x\in [0;60]$ on a d’une part :
    $\begin{align*} B(x)&=R(x)-C(x) \\
    &=50x-x^2+10x-500 \\
    &=-x^2+60x-500\end{align*}$
    D’autre part :
    $\begin{align*} -(x-10)(x-50)&=-\left(x^2-50x-10x+500\right)\\
    &=-\left(x^2-60x+500\right)\\
    &=-x^2+60x-500\end{align*}$
    Par conséquent $B(x)=-(x-10)(x-50)$.
    $\quad$
    b. $B(x)$ est un polynôme du second degré dont les racines sont $10$ et $50$ et le coefficient principal $a=-1$.
    Par conséquent $B(x)\pg 0$ sur l’intervalle $[10;50]$.
    Il faut donc produire entre $10$ et $50$ vases pour réaliser des bénéfices.
    $\quad$
  4. a. Pour tout $x\in [0;50]$ on a $B(x)=-x^2+60x-500$
    Donc : $B'(x)=-2x+60$.
    $\quad$
    b. $B'(x)=0 \ssi -2x+60=0 \ssi -2x=-60 \ssi x=30$
    $B'(x)>0 \ssi -2x+60>0\ssi -2x>-60 \ssi x<30$
    On obtient donc le tableau de variations suivant :

    On en déduit donc qu’il faut vendre $30$ vases pour réaliser un bénéfice maximum.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

E3C – Séries technologiques – Probabilités – Janvier 2020

E3C – Probabilités

Séries technologiques

Une équipe de rugby est composée de $35$ joueurs qui se répartissent en $21$ joueurs avant et $14$ joueurs arrière.
On dénombre $15$ joueurs avant qui pèsent plus de $100$ kg, alors que c’est le cas de seulement $3$ joueurs arrière.

  1. Recopier et compléter le tableau d’effectifs donné ci-dessous.
    $$\begin{array}{|c|c|c|c|}
    \hline
    \rule[-8pt]{0pt}{20pt}&~\textbf{Joueur avant}~&~\textbf{Joueur arrière}~&\phantom{12345}\textbf{Total}\phantom{12345}\\
    \hline
    \textbf{Plus de $\boldsymbol{100}$ kg}&\rule[-8pt]{0pt}{20pt}&&\\
    \hline
    \begin{array}{c}\textbf{Strictement moins}\\\textbf{de $\boldsymbol{100}$ kg}\end{array}&&&\\
    \hline
    \textbf{Total}&\rule[-8pt]{0pt}{20pt}&&\\
    \hline
    \end{array}$$
    $\quad$

Un joueur de cette équipe de rugby est choisi au hasard.
On appelle $A$ l’événement « le joueur est un joueur avant » et $B$ l’événement « le joueur pèse plus de $100$ kg ».
Les résultats seront arrondis à $10^{-3}$ près.

  1. Déterminer la probabilité de l’événement $A$ puis de l’événement $B$.
    $\quad$
  2. Calculer $P(A \cap B)$ et interpréter dans le contexte de l’exercice.
    $\quad$
  3. Le joueur choisi est un joueur avant.
    Déterminer la probabilité qu’il pèse plus de $100$ kg.
    $\quad$
  4. Calculer $P_B(A)$ et interpréter dans le contexte de l’exercice.
    $\quad$

$\quad$

Correction Exercice

  1. On obtient le tableau suivant :
    $$\begin{array}{|c|c|c|c|}
    \hline
    \rule[-8pt]{0pt}{20pt}&~\textbf{Joueur avant}~&~\textbf{Joueur arrière}~&\phantom{12345}\textbf{Total}\phantom{12345}\\
    \hline
    \textbf{Plus de $\boldsymbol{100}$ kg}&\rule[-8pt]{0pt}{20pt}15&3&18\\
    \hline
    \begin{array}{c}\textbf{Strictement moins}\\\textbf{de $\boldsymbol{100}$ kg}\end{array}&6&11&17\\
    \hline
    \textbf{Total}&\rule[-8pt]{0pt}{20pt}21&14&35\\
    \hline
    \end{array}$$
    $\quad$
  2. $P(A)=\dfrac{21}{35}=0,6$
    $P(B)=\dfrac{18}{35}\approx 0,514$
    $\quad$
  3. $P(A\cap B)=\dfrac{15}{35}=\dfrac{3}{7}\approx 0,429$
    La probabilité que le joueur soit un joueur avant de plus de $100$ kg est environ égale à $0,429$.
    $\quad$
  4. On veut calculer :
    $\begin{align*} P_A(B)&=\dfrac{P(A\cap B)}{P(A)} \\
    &=\dfrac{\dfrac{15}{35}}{~~\dfrac{21}{35}~~} \\
    &=\dfrac{15}{21} \\
    &=\dfrac{5}{7} \\
    &\approx 0,714\end{align*}$
    La probabilité que le joueur pèse plus de $100$ kg sachant que c’est un joueur avant est environ égale à $0,714$.
    $\quad$
  5. On a :
    $\begin{align*} P_B(A)&=\dfrac{P(A\cap B)}{P(B)} \\
    &=\dfrac{\dfrac{15}{35}}{~~\dfrac{18}{35}~~} \\
    &=\dfrac{15}{18}\\
    &=\dfrac{5}{6} \\
    &\approx 0,833\end{align*}$
    La probabilité que le joueur soit un joueur avant sachant qu’il pèse plus de $100$ kg est environ égale à $ 0,833$.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

E3C – Séries technologiques – Automatismes – Janvier 2020

E3C – Automatismes

Séries technologiques

  1. Quelle est la fraction irréductible égale à $\dfrac{1}{7}-\dfrac{2}{3}$?
    $\quad$
    Correction Question 1

    $\dfrac{1}{7}-\dfrac{2}{3}=\dfrac{3}{21}-\dfrac{14}{21}=-\dfrac{11}{21}$.
    $\quad$

    [collapse]

    $\quad$
  2. Un objet coûte $25$ €. Son prix baisse de $20\%$. Quel est son nouveau prix?
    $\quad$
    Correction Question 2

    $25\times \left(1-\dfrac{20}{100}\right)=\dfrac{100}{4}\times \dfrac{80}{100}=20$.
    Le nouveau prix est $20$ €.
    $\quad$

    [collapse]

    $\quad$
  3. Ecrire le nombre suivant sous la forme $a^n$ avec $a,n \in \N$.
    $$5^6\times \left(4^3\right)^2$$
    $\quad$
    Correction Question 3

    $5^6\times \left(4^3\right)^2=5^6\times 4^6=20^6$
    $\quad$

    [collapse]

    $\quad$
  4. Donner un ordre de grandeur de $$101\times 99$$
    $\quad$
    Correction Question 4

    Un ordre de grandeur de $101\times 99$ est $100\times 100=10~000$.
    $\quad$

    [collapse]

    $\quad$
  5. Résoudre dans $\R$ l’équation d’inconnue $x$ suivante : $$3x^2-1=48$$
    $\quad$
    Correction Question 5

    $3x^2-1=48 \ssi 3x^2=49 \ssi x^2=\dfrac{49}{3}$.
    Les solutions sont donc $-\dfrac{\sqrt{49}}{\sqrt{3}}$ soit $-\dfrac{7}{\sqrt{3}}$ et $\dfrac{7}{\sqrt{3}}$.
    $\quad$

    [collapse]

    $\quad$

    $\quad$

  6. Résoudre dans $\R$ l’inéquation d’inconnue $x$ suivante : $$-2x+1\pp 3$$
    $\quad$
    Correction Question 6

    $-2x+1\pp 3 \ssi -2x \pp 2 \ssi x\pg -1$
    L’ensemble solution est $[-1;+\infty[$.
    $\quad$

    [collapse]

    $\quad$
  7. Factoriser $9x^2-30x+25$
    $\quad$
    Correction Question 7

    $9x^2-30x+25=(3x)^2-2\times 3x\times 5+5^2=(3x-5)^2$
    $\quad$

    [collapse]

    $\quad$
  8. Soit $f$ la fonction définie sur $\R$ par $f(x)=(-x+1)(-2x+4)$.
    Déterminer le tableau de signes de $f(x)$.
    $\quad$
    Correction Question 8

    $-x+1=0 \ssi x=1$ et $-x+1>0 \ssi x<1$
    $-2x+4=0 \ssi -2x=-4 \ssi x=2$ et $-2x+4>0 \ssi -2x>-4 \ssi x<2$
    On obtient donc le tableau de signes suivant :$\quad$

    [collapse]

    $\quad$
  9. $\quad$

    En utilisant la courbe représentative de la fonction $f$ définie sur $[-3;2]$ donnée ci-dessous, résoudre l’inéquation $f(x)\pg 0$.
    $\quad$

    Correction Question 9

    L’ensemble des solutions de l’inéquation $f(x)\pg 0$ est $[-2;1]$.
    $\quad$

    [collapse]

    $\quad$
  10. Par lecture graphique donner l’équation réduite de la droite d représentée ci-dessus.
    $\quad$
    Correction Question 10

    L’équation réduite de la droite $d$ est : $y=-\dfrac{1}{2}x-1$.
    $\quad$

    [collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

E3C – Séries technologiques – Information chiffrée – Janvier 2020

E3C – Informations chiffrées

Séries technologiques

Depuis l’an 2000, l’Union Européenne cherche à diminuer les émissions de polluants (hydrocarbures et oxydes d’azote) sur les moteurs diesel des véhicules roulants. En 2015, la norme tolérée était fixée à $130$ milligrammes par kilomètre en conduite normalisée. L’objectif de l’Union Européenne est d’atteindre une émission de polluants inférieure à $60$ milligramme par kilomètre.
La norme est réactualisée chaque année à la baisse et depuis 2015, sa baisse est de $5,1\%$ par an.

  1. a. Justifier que la norme tolérée était d’environ 123 milligrammes par kilomètre en 2016.
    $\quad$
    b. Un véhicule émettait $120$ milligrammes par kilomètre en 2017.
    Indiquer, en justifiant, s’il respectait ou non la norme tolérée cette année-là.
    $\quad$
  2. Dans le cadre d’une recherche, Louise veut déterminer à partir de quelle année l’Union Européenne atteindra son objectif. Louise a amorcé
    l’algorithme ci-dessous programmé sous Python :
    $$\begin{array}{|l|}
    \hline
    \text{n}\textcolor{Mahogany}{=}\textcolor{Emerald}{0} \\
    \text{p}\textcolor{Mahogany}{=}\textcolor{Emerald}{130} \\
    \\
    \textcolor{blue}{\textbf{while}}\fbox{$\phantom{12345}$}\textcolor{Mahogany}{:} \\
    \hspace{1cm} \text{n}\textcolor{Mahogany}{=}\text{n}\textcolor{Mahogany}{+}\textcolor{Emerald}{1} \\
    \hspace{1cm} \text{p}\textcolor{Mahogany}{=}\textcolor{Emerald}{0.949}\textcolor{Mahogany}{*}\text{p}\\
    \textcolor{blue}{\text{print}}\textcolor{Mahogany}{(}\fbox{$\phantom{1}$}\textcolor{Mahogany}{)}\\
    \hline
    \end{array}$$
    a. Expliquer l’instruction “p=0.949 * p”.
    $\quad$
    b. Deux lignes de l’algorithme comportent des cases vides. Recopier ces lignes et les compéter afin de permettre à Louise de déterminer l’année recherchée.
    $\quad$
  3. Grâce à son algorithme, Louise a conclu qu’à partir de 2030 l’objectif de l’Union Européenne serait atteint. Vérifier à l’aide d’un calcul qu’elle a raison.
    $\quad$

$\quad$

Correction Exercice

  1. a. $130\times \left(1-\dfrac{5,1}{100}\right)=123,37$
    La norme tolérée était d’environ $123$ milligrammes par kilomètre en 2016.
    $\quad$
    b. $123,37\times \left(1-\dfrac{5,1}{100}\right)\approx 117,08<120$
    Le véhicule ne respectait pas la norme tolérée en 2017.
    $\quad$
  2. a. $1-\dfrac{5,1}{100}=0,949$
    L’instruction permet donc de calculer la norme tolérée l’année suivante.
    $\quad$
    b. On obtient l’algorithme suivant :
    $$\begin{array}{|l|}
    \hline
    \text{n}\textcolor{Mahogany}{=}\textcolor{Emerald}{0} \\
    \text{p}\textcolor{Mahogany}{=}\textcolor{Emerald}{130} \\
    \\
    \textcolor{blue}{\textbf{while}}\fbox{p>60}\textcolor{Mahogany}{:} \\
    \hspace{1cm} \text{n}\textcolor{Mahogany}{=}\text{n}\textcolor{Mahogany}{+}\textcolor{Emerald}{1} \\
    \hspace{1cm} \text{p}\textcolor{Mahogany}{=}\textcolor{Emerald}{0.949}\textcolor{Mahogany}{*}\text{p}\\
    \textcolor{blue}{\text{print}}\textcolor{Mahogany}{(}\fbox{n}\textcolor{Mahogany}{)}\\
    \hline
    \end{array}$$
    $\quad$
  3. $130\times 0,949^{14}\approx 62,47>60$.
    $130\times 0,949^{15}\approx 59,28<60$.
    À partir de 2030 l’objectif est donc atteint.

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence