solution-E3C2 – Spécialité maths – Vrai Faux – 2020

Vrai / Faux

E3C2 – 1ère

Pour chacune des cinq affirmations suivantes, dire si elle est vraie ou fausse. Chaque réponse devra être justifiée.
Toute démarche de justification même non aboutie sera prise en compte.

  1. Dans le plan muni d’un repère orthonormé, on donne les points :
    $$𝐴(2 ; -2) , \quad B(4 ; 0) ,\quad C(0 ; −5) ,\quad D(-7 ; 1)$$
    Affirmation 1 : Les droites $(AB)$ et $(CD)$ sont perpendiculaires.
    $\quad$
    Affirmation 2 : Une équation de la droite perpendiculaire à $(AB)$ passant par $C$ est : $$y = x- 5$$
    $\quad$
    Affirmation 3 : Une équation du cercle de centre $A$ passant par $B$ est : $$(x-2)^2+(y+2)^2=8$$
    $\quad$
  2. Soit $f$ la fonction définie pour tout $x\in]0;+\infty[$ par : $$f(x)=\dfrac{\e^x}{x}$$ On note $f’$ sa fonction dérivée.
    Affirmation 4 : $f'(1)=0$
    $\quad$
  3. On donne $\cos\left(\dfrac{2\pi}{5}\right)=\dfrac{-1+\sqrt{5}}{4}$
    Affirmation 5 : $\sin\left(\dfrac{2\pi}{5}\right)<0$
    $\quad$

$\quad$

Correction Exercice

Affirmation 1 fausse

On a $\vect{AB}\begin{pmatrix}2\\2\end{pmatrix}$ et $\vect{CD}\begin{pmatrix}-7\\6\end{pmatrix}$
Ainsi :
$\begin{align*} \vect{AB}.\vect{CD}&=2\times (-7)+2\times 6\\
&=-2\\
&\neq 0\end{align*}$
Les vecteurs ne sont pas orthogonaux. Les droites $(AB)$ et $(CD)$ ne sont pas perpendiculaires.

$\quad$

Affirmation 2 fausse

On appelle $d$ la droite perpendiculaire à $(AB)$ passant par $C$
$\vect{AB}$ est un vecteur normal à droite $d$.
Une équation cartésienne de $d$ est donc de la forme $2x+2y+c=0$.
$C(0;-5)$ appartient à $d$ donc $0-10+c=0 \ssi c=10$.
Une équation cartésienne de $d$ est donc $2x+2y+10=0$ ou encore $x+y+5=0$
Par conséquent $y=-5-x$

$\quad$

Affirmation 3 vraie

$AB$ est un rayon de ce cercle. On a $\vect{AB}\begin{pmatrix}2\\2\end{pmatrix}$.
$\begin{align*} AB^2&=2^2+2^2\\
&=8\end{align*}$
Une équation du cercle de centre $A$ passant par $B$ est donc :
$(x-2)^2+\left(y-(-2)\right)^2=8$ soit $(x-2)^2+(y+2)^2=8$.

$\quad$

Affirmation 4 vraie

$f$ est dérivable sur $]0;+\infty[$ en tant que quotient de fonctions dérivables dont le dénominateur ne s’annule pas sur $]0;+\infty[$.
Pour tout réel $x>0$ on a :
$\begin{align*} f'(x)&=\dfrac{\e^x\times x-\e^x\times 1}{x^2} \\
&=\dfrac{(x-1)\e^x}{x^2}\end{align*}$
Par conséquent $f'(1)=0$

$\quad$

Affirmation 5 fausse

$\dfrac{2\pi}{5}\in ]0;\pi[$ donc $\sin\left(\dfrac{2\pi}{5}\right)>0$

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – Fonctions – 2020

Fonctions

E3C2 – 1ère

Une entreprise produit entre $1$ millier et $5$ milliers de pièces par jour. Le coût moyen de production d’une pièce, en milliers d’euros, pour $x$ milliers de pièces produites, est donné
par la fonction $f$ définie pour tout réel $x\in[1 ; 5]$ par : $$f(x)=\dfrac{0,5x^3-3x^2+x+16}{x}$$

  1. Calculer le coût moyen de production d’une pièce lorsque l’entreprise produit $2$ milliers de pièces.
    $\quad$
  2. On admet que de $f$ est dérivable sur $[1 ; 5]$ et on note $f’$ sa fonction dérivée.
    Montrer que pour tout réel $x\in [1; 5]$, $$f'(x)=\dfrac{x^3-3x^2-16}{x^2}$$
    $\quad$
  3. Vérifier que, pour tout réel $x$, $$x^3-3x^2-16=(x-4)\left(x^2+x+4\right)$$
    $\quad$
  4. En déduire le tableau de variation de $f$ sur $[1 ; 5]$.
    $\quad$
  5. Déterminer le nombre de pièces à fabriquer pour que le coût moyen de production d’une pièce soit minimal, ainsi que la valeur de ce coût minimal.
    $\quad$

$\quad$

Correction Exercice

  1. On a :
    $\begin{align*} f(2)&=\dfrac{0,5\times 2^3-3\times 2^2+2+1}{2}\\
    &=5\end{align*}$
    Lorsque l’entreprise produit $2$ milliers de pièce le coût moyen de production d’une pièce est de $5~000$ euros.
    $\quad$
  2. Pour tout réel $x \in [1;5]$ on a :
    $\begin{align*} f'(x)&=\dfrac{\left(0,5\times 3x^2-6x+1\right)x-\left(0,5x^3-3x^2+x+16\right)\times 1}{x^2}\\
    &=\dfrac{1,5x^3-6x^2+x-0,5x^3+3x^2-x-16}{x^2}\\
    &=\dfrac{x^3-3x^2-16}{x^2}\end{align*}$
    $\quad$
  3. Pour tout réel $x$ on a :
    $\begin{align*}&(x-4)\left(x^2+x+4\right)\\
    =~&x^3+x^2+4x-4x^2-4x-16\\
    =~&x^3-3x^2-16\end{align*}$
    $\quad$
  4. Ainsi pour tout réel $x\in[1;5]$ on a $f'(x)=\dfrac{(x-4)\left(x^2+x+4\right)}{x^2}$
    Le signe de $f'(x)$ ne dépend donc que de celui de $(x-4)\left(x^2+x+4\right)$
    $x-4=0\ssi x=4$ et $x-4>0 \ssi x>4$
    Le discriminant de $x^2+x+4$ est :
    $\begin{align*} \Delta&=1^2-4\times 1\times 4\\
    &=-15\\
    &<0\end{align*}$
    Le coefficient principal est $a=1>0$.
    Par conséquent $x^2+x+4>0$.
    On obtient donc le tableau de variations suivant :

    $\quad$
  5. D’après le tableau de variations la fonction $f$ atteint son minimum pour $x=4$ et $f(4)=1$
    Le coût de production d’une pièce est minimal quand elle fabrique $4~000$ pièces. Ce coût est alors de $1~000$ €.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – Suites – 2020

Suites

E3C2 – 1ère

Un complexe cinématographique a ouvert ses portes en 2018 en périphérie d’une ville.
En 2018, le complexe a accueilli $180$ mille spectateurs. La gestionnaire du complexe prévoit une augmentation de $4 \%$ par an de la fréquentation du complexe.

Soit $n$ un entier naturel. On note $u_n$ le nombre de spectateurs, en milliers, du complexe cinématographique pour l’année (2018 $+n$). On a donc $u_0 = 180$.

  1. Étude de la suite $\left(u_n\right)$.
    a. Calculer le nombre de spectateurs en 2019.
    $\quad$
    b. Justifier que la suite $\left(u_n\right)$ est géométrique. Préciser sa raison.
    $\quad$
    c. Exprimer $u_n$ en fonction de $n$, pour tout entier naturel $n$.
    $\quad$
  2. Un cinéma était déjà installé au centre-ville.
    En 2018, il a accueilli $260~000$ spectateurs. Avec l’ouverture du complexe, le cinéma du centre-ville prévoit de perdre $10~000$ spectateurs par an.
    Pour $n$, entier naturel, on note $v_n$ le nombre de spectateurs, en milliers, accueillis dans le
    cinéma du centre-ville l’année (2018 $+n$). On a donc $v_0 = 260$.
    a. Quelle est la nature de la suite $\left(v_n\right)$ ?
    $\quad$
    b. On donne le programme ci-dessous, écrit en Python.
    $$\begin{array}{|l|}
    \hline
    \text{def cinema() :}\\
    \hspace{1cm}\text{n = 0}\\
    \hspace{1cm}\text{u = 180}\\
    \hspace{1cm}\text{v = 260}\\
    \hspace{1cm}\text{while u < v :}\\
    \hspace{2cm}\text{n = n + 1}\\
    \hspace{2cm}\text{u = 1.04*u}\\
    \hspace{2cm}\text{v = v – 10}\\
    \hspace{1cm}\text{return n}\\
    \hline
    \end{array}$$
    Quelle est la valeur renvoyée lors de l’exécution de la fonction $\text{cinema()}$ ?
    L’interpréter dans le contexte de l’exercice.
    $\quad$

$\quad$

Correction Exercice

  1. a. On a :
    $\begin{align*} u_1&=\left(1+\dfrac{4}{100}\right)u_0\\
    &=1,04\times 180\\
    &=187,2\end{align*}$
    En 2019 le cinéma a accueilli $187~200$ spectateurs.
    $\quad$
    b. Pour tout entier naturel $n$ on a :
    $\begin{align*} u_{n+1}&=\left(1+\dfrac{4}{100}\right)u_n\\
    &=1,04u_n\end{align*}$
    La suite $\left(u_n\right)$ est donc géométrique de raison $1,04$ et de premier terme $u_0=180$.
    $\quad$
    c. Pour tout entier naturel $n$ on a donc $u_n=180\times 1,04^n$.
    $\quad$
  2. a. Pour tout entier naturel $n$ on a $v_{n+1}=v_n-10$.
    La suite $\left(v_n\right)$ est donc arithmétique de raison $10$ et de premier terme $v_0=260$.
    $\quad$
    b. La fonction $\text{cinema()}$ détermine le plus petite entier naturel $n$ tel que $u_n \pg v_n$.
    Voici les premières valeurs prises, arrondies au millième si nécessaire, par les termes des deux suites.
    $\begin{array}{|c|c|c|c|c|c|c|}
    \hline
    n& 0& 1& 2& 3& 4& 5\\
    \hline
    u_n& 180& 187,2& 194,688& 202,476& 210,575& 218,998\\
    \hline
    ~~v_n~~& ~~~~260~~~~& ~~~~250~~~~& ~~240~~& ~~230~~& ~~220~~& ~~210~~\\
    \hline
    \end{array}$
    La fonction $\text{cinema()}$  renvoie donc la valeur $5$.
    Cela signifie que c’est au bout de $5$ ans que la fréquentation du complexe sera supérieure pour la première fois à celle du cinéma de centre-ville.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – Probabilités – 2020

Probabilités

E3C2 – 1ère

La gestionnaire d’un cinéma s’intéresse à la catégorie des films vus par ses spectateurs, ainsi qu’à leur consommation au rayon « friandises ». Une étude sur plusieurs mois a montré que $40 \%$ des spectateurs sont allés voir un film d’action, $35 \%$ un dessin animé et les autres une comédie.
Parmi les spectateurs allant voir un film d’action, la moitié achètent des friandises, alors qu’ils sont $80 \%$ pour ceux allant voir un dessin animé et $70 \%$ pour ceux allant voir une comédie.
On interroge au hasard un spectateur sortant du cinéma et on note :
$\hspace{1.5cm} A$ l’événement : « le spectateur a vu un film d’action »,
$\hspace{1.5cm} D$ l’événement : « le spectateur a vu un dessin animé »,
$\hspace{1.5cm} C$ l’événement : « le spectateur a vu une comédie »,
$\hspace{1.5cm} F$ l’événement : « le spectateur a acheté des friandises ».

  1. Reproduire et compléter sur la copie l’arbre de probabilité ci-dessous représentant la situation.
    $\quad$
  2. Démontrer que $P(F) = 0,655$.
    $\quad$
  3. On interroge au hasard un spectateur ayant acheté des friandises. Quelle est la probabilité qu’il ait vu un dessin animé ? On donnera l’arrondi à $10^{-3}$.
    $\quad$
  4. Une place de cinéma coûte $10$ €. On considérera que si un spectateur achète des friandises, il dépense $18$ € pour sa place de cinéma et ses friandises.
    On note $X$ la variable aléatoire donnant le coût d’une sortie au cinéma pour un spectateur.
    a. Déterminer la loi de probabilité de $X$.
    $\quad$
    b. En déduire le coût moyen par spectateur d’une sortie dans ce cinéma.
    $\quad$

$\quad$

Correction Exercice

  1. On obtient l’arbre pondéré suivant :

    $\quad$
  2. $A$, $D$ et $C$ forment un système complet d’événements fini.
    D’après la formule des probabilités totales on a :
    $\begin{align*} P(F)&=P(A\cap F)+P(D\cap F)+P(C\cap F) \\
    &=0,4\times 0,5+0,35\times 0,8+0,25\times 0,7\\
    &=0,655\end{align*}$
    $\quad$
  3. On veut calculer :
    $\begin{align*} P_F(D)&=\dfrac{P(D\cap F)}{P(F)} \\
    &=\dfrac{0,35\times 0,8}{0,655}\\
    &\approx 0,427\end{align*}$
    La probabilité que le spectateur ait vu un dessin animé sachant qu’il a acheté des friandises est environ égale à $0,427$.
    $\quad$
  4. a. $X$ peut prendre les valeurs $10$ et $18$.
    $\begin{align*} P(X=18)&=P(F)\\
    &=0,655\end{align*}$
    $\begin{align*} P(X=10)&=1-P(X=18)\\
    &=0,345\end{align*}$
    $\quad$
    b. L’espérance mathématique de la variable aléatoire $X$ est :
    $\begin{align*} E(X)&=18\times 0,655+10\times 0,345\\
    &=15,24\end{align*}$
    En moyenne, un spectateur dépense $15,24$ € dans ce cinéma.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

 

E3C2 – Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Cet exercice est un QCM et comprend cinq questions.
Pour chacune des questions, une seule des quatre réponses proposées est correcte.
Les questions sont indépendantes.
Pour chaque question, indiquer le numéro de la question et recopier sur la copie la lettre correspondant à la réponse choisie.
Aucune justification n’est demandée, mais il peut être nécessaire d’effectuer des recherches au brouillon pour aider à déterminer votre réponse.
Chaque réponse correcte rapporte un point. Une réponse incorrecte ou une question sans réponse n’apporte ni ne retire aucun point.

Question 1

On donne ci-dessous la courbe représentative $C_f$ d’une fonction $f$.


Cette courbe a une tangente $T$ au point $A(-3 ; 3)$.
L’équation réduite de cette tangente est :

a. $y=\dfrac{1}{5}x-3,7$
b. $y=\dfrac{1}{5}x+18$
c. $y=5x+18$
d. $y=5x-3,7$

$\quad$

Correction Question 1

D’après le graphique, l’ordonnée à l’origine de la droite $T$ est $18$.
Cette droite passe par les points de coordonnées $(-3;3)$ et $(0;18)$.
Le coefficient directeur est donc :
$\begin{align*} a&=\dfrac{18-3}{0-(-3)}\\
&=5\end{align*}$

Réponse c

$\quad$

[collapse]

$\quad$

Question 2

On reprend la fonction $f$ de la question précédente. La représentation graphique de sa fonction dérivée est :

$\quad$

Correction Question 2

D’après le graphique, la fonction $f$ est croissante sur les intervalles $]-\infty;-2]$ et $[2;+\infty[$ et décroissante sur l’intervalle $[-2;2]$.
$f'(x)$ est donc positif sur $]-\infty;-2]$ et $[2;+\infty[$ et négatif sur $[-2;2]$.

Réponse b

$\quad$

[collapse]

$\quad$

Question 3

L’expression $\cos(x+\pi)+\sin\left(x+\dfrac{\pi}{2}\right)$ est égale à :

a. $-2\cos(x)$
b. $0$
c. $\cos(x)+\sin(x)$
d. $2\cos(x)$

$\quad$

Correction Question 3

Pour tout réel $x$ on a :
$\begin{align*} \cos(x+\pi)+\sin\left(x+\dfrac{\pi}{2}\right)&=-\cos(x)+\cos(x)\\
&=0\end{align*}$

Réponse 0

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

On considère la fonction polynôme du second degré $f$ définie sur $\R$ par $f(x)=-2x^2+4x+6$.
Cette fonction est strictement positive sur l’intervalle :

a. $]-\infty;-1[\cup]3;+\infty[$
b. $]-1;3[$
c. $]-\infty;-3[\cup]1;+\infty[$
d. $]-3;1[$

$\quad$

Correction Question 4

Le discriminant est :
$\begin{align*} \Delta&=4^2-4\times (-2)\times 6\\
&=64\\
&>0\end{align*}$

Les racines sont donc :
$\begin{align*} x_1&=\dfrac{-4-\sqrt{64}}{-4}\\
&=3\end{align*}$ $\quad$ et $\quad$ $\begin{align*} x_2&=\dfrac{-4+\sqrt{64}}{-4}\\
&=-1\end{align*}$

Le coefficient principal est $a=-2<0$.
Par conséquent $f(x)>0$ sur l’intervalle $]-1;3[$.

Réponse b

$\quad$

[collapse]

$\quad$

Question 5

On considère la fonction $h$ définie sur $\R$ par $h(x)=(2x-1)\e^x$.
La fonction dérivée de la fonction $h$ est définie sur $\R$ par :

a. $h'(x)=2\e^x$
b. $h'(x)=(2x+1)\e^x$
c. $h'(x)=(2x-1)\e^x$
d. $h'(x)=-\e^x$

$\quad$

Correction Question 5

La fonction $h $est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.

Pour tout réel $x$ on a :
$\begin{align*} h'(x)&=2\e^x +(2x-1)\e^x \\
&=(2+2x-1)\e^x\\
&=(2x+1)\e^x\end{align*}$

Réponse b

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – Suites – 2020

Suites

E3C2 – 1ère

Un globe-trotter a comme objectif de parcourir $2~000$ km à pied. Il peut parcourir $50$ km en une journée, mais, la fatigue s’accumulant, la distance qu’il parcourt diminue de $2\%$ chaque nouvelle journée.
On note la distance $D_n$ la distance parcourue durant le $n$-ième jour.
Le premier jour de son périple, il parcourt donc $D_1 = 50$ km.

  1. Calculer la distance parcourue le deuxième jour.
    $\quad$
  2. Quelle est la nature de la suite $\left(D_n\right)$ ? Donnez ses éléments caractéristiques.
    $\quad$
  3. Pour tout entier naturel $n\pg 1$, déterminer l’expression de $D_n$ en fonction de $n$.
    $\quad$
  4. Pour calculer le nombre de jours qu’il faudra au globe-trotter pour atteindre son objectif, on a écrit le programme Python suivant :
    $$\begin{array}{|l|}
    \hline
    \text{def nb_jours:}\\
    \hspace{1cm}\text{j=1}\\
    \hspace{1cm}\text{u=50}\\
    \hspace{1cm}\text{S=50}\\
    \hspace{1cm}\text{while $\ldots\ldots$:}\\
    \hspace{2cm}\text{u=0.98*u}\\
    \hspace{2cm}\text{S=S+u}\\
    \hspace{2cm}\text{j= $\ldots\ldots$}\\
    \hspace{1cm}\text{return j}\\
    \hline
    \end{array}$$
    Compléter les deux lignes incomplètes de ce programme.
    $\quad$
  5. À l’aide de l’extrait de tableur ci-dessous, déterminer
    quand le globe-trotter aura atteint son objectif.

    $\quad$

$\quad$

Correction Exercice

  1. Le deuxième jour, il a parcouru $50\times \left(1-\dfrac{2}{100}\right)=49$ km.
    $\quad$
  2. Pour tout entier naturel $n\pg 1$ on a :
    $\begin{align*} D_{n+1}&=\left(1-\dfrac{2}{100}\right)D_n\\
    &=0,98D_n\end{align*}$
    La suite $\left(D_n\right)$ est donc géométrique de raison $0,98$ et de premier terme $D_1=50$.
    $\quad$
  3. Pour tout entier naturel $n\pg 1$ on a donc $D_n=50\times 50^{n-1}$.
    $\quad$
  4. On obtient le programme Python suivant :
    $$\begin{array}{|l|}
    \hline
    \text{def nb_jours:}\\
    \hspace{1cm}\text{j=1}\\
    \hspace{1cm}\text{u=50}\\
    \hspace{1cm}\text{S=50}\\
    \hspace{1cm}\text{while S<2000:}\\
    \hspace{2cm}\text{u=0.98*u}\\
    \hspace{2cm}\text{S=S+u}\\
    \hspace{2cm}\text{j= j+1}\\
    \hspace{1cm}\text{return j}\\
    \hline
    \end{array}$$
    $\quad$
  5. D’après le tableur, le globe-trotter atteindra son objectif au bout de $80$ jours.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

 

E3C2 – Spécialité maths – Géométrie repérée – 2020

Géométrie repérée

E3C2 – 1ère

Soit $\Oij$ un repère orthonormé.
On considère le cercle $\mathcal{C}$ de centre $A(2 ; 5)$ et de rayon $5$.

  1. Montrer qu’une équation du cercle $\mathcal{C}$ est : $x^2+y^2-4x-10y=-4$.
    $\quad$
  2. Vérifier que le point $B(5; 9)$ appartient à ce cercle.
    $\quad$
  3. Que peut-on dire de la tangente au cercle au point $B$ et de la droite $(AB)$ ?
    $\quad$
  4. Déterminer une équation de la tangente au cercle au point $B$.
    $\quad$
  5. Calculer les coordonnées des points d’intersection du cercle $\mathcal{C}$ avec l’axe des ordonnées.
    $\quad$

$\quad$

Correction Exercice

  1. Une équation du cercle $\mathcal{C}$ est :
    $\begin{align*} &(x-2)^2+(y-5)^2=5^2 \\
    \ssi~&x^2-4x+4+y^2-10x+25=25\\
    \ssi~&x^2-4x+y^2-10x=-4\end{align*}$
    $\quad$
  2. Si $x=5$ et $y=9$ alors
    $\begin{align*} x^2-4x+y^2-10x=25-20+81-90 \\
    &=-4\end{align*}$
    Donc $B$ appartient au cercle $\mathcal{C}$.
    $\quad$
  3. $[AB]$ est un rayon du cercle $\mathcal{C}$.
    Par conséquent la tangente au cercle au point $B$ est perpendiculaire à la droite $(AB)$.
    $\quad$
  4. Le vecteur $\vect{AB}$ est donc normal à la tangente $(d)$ au cercle au point $B$.
    $\vect{AB}\begin{pmatrix} 3\\4\end{pmatrix}$.
    Une équation de $(d)$ est alors d la forme $3x+4y+c=0$
    Le point $B(5;9)$ appartient à cette droite.
    Par conséquent $15+36+c=0 \ssi c=-51$.
    Une équation de $(d)$ est $3x+4y-51=0$.
    $\quad$
  5. Les points d’intersection du cercle $\mathcal{C}$ avec l’axe des ordonnées ont une abscisse nulle.
    Ainsi leur ordonnées sont solution de l’équation $y^2-10y+4=0$.
    Le discriminant est :
    $\begin{align*} \Delta&=(-10)^2-4\times 1\times 4 \\
    &=84\\
    &>0\end{align*}$
    Les racines sont donc :
    $\begin{align*} y_1&=\dfrac{10-\sqrt{84}}{2}\\
    &=5-\sqrt{21}\end{align*}$ $\quad$ et $\quad$ $\begin{align*} y_1&=\dfrac{10+\sqrt{84}}{2}\\
    &=5+\sqrt{21}\end{align*}$
    Ainsi les points d’intersection du cercle $\mathcal{C}$ avec l’axe des ordonnées ont pour coordonnées $\left(0;5-\sqrt{21}\right)$ et $\left(0;5+\sqrt{21}\right)$.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – Probabilités – 2020

Probabilités

E3C2 – 1ère

Lors des journées classées « rouges » selon Bison Futé, l’autoroute qui relie Paris à Limoges en passant par Orléans est surchargée.
Lors de ces journées classées « rouges », on a pu observer le comportement des automobilistes faisant le trajet de Paris à Limoges en passant par Orléans.

  • Pour le trajet de Paris à Orléans, $30 \%$ d’entre eux prennent la route nationale, les autres prennent l’autoroute.
  • Pour le trajet d’Orléans à Limoges :
    • parmi les automobilistes ayant pris la route nationale entre Paris et Orléans, $40 \%$ prennent la route départementale, les autres prennent l’autoroute ;
    • parmi les automobilistes n’ayant pas pris la route nationale entre Paris et Orléans, $45 \%$ prennent la route départementale , les autres prennent l’autoroute.

On choisit un automobiliste au hasard parmi ceux effectuant, en journée classée rouge, le trajet Paris – Limoges en passant par Orléans.

On note $N$ l’événement « l’automobiliste prend la route nationale entre Paris et Orléans » et $D$ l’événement « l’automobiliste prend la route départementale entre Orléans et Limoges ».
Si $A$ est un évènement, on note $\conj{A}$ l’évènement contraire de $A$.

  1. Recopier sur la copie et compléter l’arbre ci-dessous.$\quad$
  2. Calculer $P\left(𝑁̅ \cap \conj{D}\right)$ et interpréter le résultat.
    $\quad$
  3. Montrer que la probabilité que l’automobiliste ne choisisse pas la Route Départementale entre Orléans et Limoges est $0,565$.
    $\quad$
    Lors de ces journées classées « rouges », on donne les temps de parcours suivants :
    Paris – Orléans, par autoroute : $3$ heures ;
    Paris – Orléans, par nationale : $2$ heures ;
    Orléans – Limoges, par autoroute : $4$ heures ;
    Orléans – Limoges, par départementale : $3$ heures et demie.
    $\quad$
  4. Recopier et compléter le tableau ci-dessous, qui donne pour chaque trajet, le temps en heure et la probabilité :
    $$\begin{array}{|l|c|c|c|c|}
    \hline
    \text{Évènement}&N\cap D&N\cap \conj{D}&\conj{N}\cap D&\conj{N}\cap \conj{D}\\
    \hline
    \text{Temps en heure}&5,5&&&\\
    \hline
    \text{Probabilité}&0,12&&&\\
    \hline
    \end{array}$$
    $\quad$
  5. Calculer l’espérance de la variable aléatoire qui donne la durée du trajet en heure et en donner une interprétation.
    $\quad$

$\quad$

Correction Exercice

  1. On obtient l’arbre pondéré suivant :
    $\quad$
  2. On a :
    $\begin{align*} P\left(\conj{N}\cap \conj{D}\right)&=P\left(\conj{N}\right)\times P_{\conj{N}}\left(\conj{D}\right) \\
    &=0,7\times 0,55\\
    &=0,385\end{align*}$
    La probabilité pour que l’automobiliste n’ait pris ni la route nationale ni la route départementale est égale à $0,385$.
    $\quad$
  3. $N$ et $\conj{N}$ forment un système complet d’événements fini.
    D’après la formule des probabilités totales on a :
    $\begin{align*} P\left(\conj{D}\right)&=P\left(N\cap \conj{D}\right)+P\left(\conj{N}\cap \conj{D}\right)\\
    &=0,3\times 0,6+0,385\\
    &=0,565\end{align*}$
    $\quad$
  4. On obtient le tableau suivant :
    $$\begin{array}{|l|c|c|c|c|}
    \hline
    \text{Évènement}&N\cap D&N\cap \conj{D}&\conj{N}\cap D&\conj{N}\cap \conj{D}\\
    \hline
    \text{Temps en heure}&5,5&6&6,5&7\\
    \hline
    \text{Probabilité}&0,12&0,18&0,315&0,385\\
    \hline
    \end{array}$$
    $\quad$
  5. On appelle $X$ la variable aléatoire qui donne la durée du trajet en heure.
    On a ainsi $P(X=5,5)=0,12$, $P(X=6)=0,18$, $P(X=6,5)=0,315$ et $P(X=7)=0,385$.
    Ainsi l’espérance mathématique de $X$ est :
    $\begin{align*} E(X)&=5,5\times 0,12+6\times 0,18+6,5\times 0,315+7\times 0,385\\
    &=6,482~5\end{align*}$
    En moyenne, la durée du trajet est d’environ $6,5$ heures.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

 

E3C2 – Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Ce QCM comprend 5 questions. Pour chacune des questions, une seule des quatre réponses proposées est correcte. Les questions sont indépendantes.
Pour chaque question, indiquer le numéro de la question et recopier sur la copie la lettre correspondante à la réponse choisie.
Aucune justification n’est demandée mais il peut être nécessaire d’effectuer des recherches au brouillon pour aider à déterminer votre réponse.
Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une question sans réponse n’apporte ni ne retire de point.

Question 1

Une fonction du second degré $f$ a pour forme canonique valable pour tout réel $x$ : $f(x)=3(x+2)^2+5$.
Concernant son discriminant :

a. on peut dire qu’il est nul
b. on peut dire qu’il est strictement positif
c. on peut dire qu’il est strictement négatif
d. on ne peut rien dire sur son signe

$\quad$

Correction Question 1

Pour tout réel $x$ on a donc $f(x)\pg 5$.
Donc l’équation $f(x)=0$ n’admet pas de solution réelle.
Son discriminant est donc strictement négatif.

Réponse c

$\quad$

[collapse]

$\quad$

Question 2

Un vecteur directeur de la droite d’équation $2x+3y+5=0$ est :

a. $\vec{u}(2;3)$
b. $\vec{u}(-3;2)$
c. $\vec{u}(3;2)$
d. $\vec{u}(-2;3)$

$\quad$

Correction Question 2

Un vecteur directeur d’une droite dont une équation cartésienne est $ax+by+c=0$ est $\vec{u}(-b;a)$.

Un vecteur directeur de la droite d’équation $2x+3y+5=0$ est $\vec{u}(-3;2)$.

Réponse b

$\quad$

[collapse]

$\quad$

Question 3

Dans un repère orthonormé du plan, on considère les points $A(3; -1)$, $B( 4 ; 2)$ et $C (1 ; 1)$.
Le produit scalaire $\vect{AB}.\vect{AC}$ est égal à :

a. $-4$
b. $2$
c. $4$
d. $8$

$\quad$

Correction Question 3

On a $\vec{AB}(1;3)$ et $\vec{AC}(-2;2)$.
Ainsi :
$\begin{align*} \vect{AB}.\vect{AC}&=1\times (-2)+3\times 2 \\
&=-2+6\\
&=4\end{align*}$

Réponse c

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

Soit $g$ la fonction définie sur l’ensemble des nombres réels par $g(x)=(2x+1)\e^x$.
Pour tout réel $x$, $g'(x)$ est égal à :

a. $2\e^x$
b. $2x\e^x$
c. $(2x+2)\e^x$
d. $(2x+3)\e^x$

$\quad$

Correction Question 4

La fonction $g$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
Pour tout réel $x$ on a :
$\begin{align*} g'(x)&=2\e^x+(2x+1)\e^x \\
&=(2+2x+1)\e^x \\
&=(2x+3)\e^x\end{align*}$

Réponse d

$\quad$

[collapse]

$\quad$

Question 5

Pour tout réel $x$, $\sin(x+\pi)$ est égal à :

a. $\cos x$
b. $\sin x$
c. $-\cos x$
d. $-\sin x$

$\quad$

Correction Question 5

Pour tout réel $x$ on a $\sin(x+\pi)=-\sin x$.

Réponse d

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – Suites – 2020

Suites

E3C2 – 1ère

Durant l’été, une piscine extérieure perd chaque semaine $4 \%$ de son volume d’eau par évaporation. On étudie ici un bassin qui contient $80$ m$^3$ après son remplissage.

  1. Montrer par un calcul que ce bassin contient $76,8$ m$^3$ d’eau une semaine après son remplissage.
    $\quad$
  2. On ne rajoute pas d’eau dans le bassin et l’eau continue à s’évaporer. On modélise le volume d’eau contenue dans la piscine par une suite $\left(V_n\right)$ : pour tout entier naturel $n$, on note $V_n$ la quantité d’eau en m$^3$ contenue dans la piscine $n$ semaines après son remplissage. Ainsi $V_0=80$.
    a. Justifier que pour tout entier naturel $n$, $V_{n+1} = 0,96V_n$ et préciser la nature de la suite $\left(V_n\right)$ ainsi définie.
    $\quad$
    b. Donner une expression de $V_n$ en fonction de $n$.
    $\quad$
    c. Quelle quantité d’eau contient le bassin au bout de $7$ semaines ?
    $\quad$
  3. Pour compenser en partie les pertes d’eau provoquées par l’évaporation, on décide de rajouter $2$ m d’eau chaque semaine dans le bassin. On souhaite déterminer au bout de
    combien de semaines, le volume d’eau contenu dans la piscine devient inférieur à $70$ m$^3$.
    Compléter la fonction Python suivante afin que l’appel $\text{nombreJour(70)}$ renvoie le nombre de semaines à partir duquel le volume d’eau de la piscine sera inférieur à $70$ m$^3$.
    $$\begin{array}{|l|}
    \hline
    \text{def nombreJour(U) :}\\
    \hspace{0.5cm}\text{N=0}\\
    \hspace{0.5cm}\text{V=80}\\
    \hspace{0.5cm}\text{while $\ldots$ >= $\ldots$ :}\\
    \hspace{1cm}\text{N=N+1}\\
    \hspace{1cm}\text{V=$\ldots\ldots\ldots$}\\
    \hspace{0.5cm}\text{return $\ldots$}\\
    \hline
    \end{array}$$
    $\quad$

$\quad$

Correction Exercice

  1. Une semaine après son remplissage,le volume d’eau, en m$^3$, contenu dans le bassin est :
    $\begin{align*} V&=\left(1-\dfrac{4}{100}\right)\times 80\\
    &=0,96\times 80\\
    &=76,8\end{align*}$
    $\quad$
  2. a. Pour tout entier naturel $n$ on a :
    $\begin{align*} V_{n+1}&=\left(1-\dfrac{4}{100}\right) V_n\\
    &=0,96V_n\end{align*}$
    La suite $\left(V_n\right)$ est donc géométrique de raison $0,96$ et de premier terme $V_0=80$.
    $\quad$
    b. Ainsi, pour tout entier naturel $n$, on a $V_n=80\times 0,96^n$.
    $\quad$
    c. $V_7=80\times 0,96^7 \approx 60,12$.
    Au bout de $7$ semaines, le bassin contient $60,12$ m$^3$ d’eau.
    $\quad$
  3. On obtient le programme suivant :
    $$\begin{array}{|l|}
    \hline
    \text{def nombreJour(U) :}\\
    \hspace{0.5cm}\text{N=0}\\
    \hspace{0.5cm}\text{V=80}\\
    \hspace{0.5cm}\text{while V >= 70 :}\\
    \hspace{1cm}\text{N=N+1}\\
    \hspace{1cm}\text{V=0.96*V}\\
    \hspace{0.5cm}\text{return N}\\
    \hline
    \end{array}$$
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence