Bac – Spécialité mathématiques – Métropole – sujet 2 – septembre 2021

Métropole – septembre 2021

Spécialité maths – Sujet 2 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1 (4 points)

  1. On obtient l’arbre pondéré suivant :
    $\quad$
    $\quad$
  2. a. On veut calculer :
    $\begin{align*} p(S\cap I)&=p(S)\times p_S(I) \\
    &=0,08\times 0,9\\
    &=0,072\end{align*}$
    La probabilité que le courriel choisi soit un message de spam et qu’il soit classé indésirable est égale à $0,072$.
    $\quad$
    b. $\left(S,\conj{S}\right)$ forme un système complet d’événements fini.
    D’après la formule des probabilités totales on a :
    $\begin{align*} p(I)&=p(S)p_S(I)+p\left(\conj{S}\right)p_{\conj{S}}(I) \\
    &=0,08\times 0,9+0,92\times 0,01 \\
    &=0,0812\end{align*}$
    La probabilité que le message soit classé indésirable est $0,0812$.
    $\quad$
    c. On veut calculer :
    $\begin{align*} p_I(S)&=\dfrac{p(S)\times p_S(I)}{p(I)} \\
    &=\dfrac{0,08\times 0,9}{0,0812} \\
    &\approx 0,89\end{align*}$
    La probabilité que le message soit du spam sachant qu’il est classé comme indésirable est environ égale à $0,89$.
    $\quad$
  3. a. On effectue $50$ tirages aléatoires, identiques et indépendants. À chaque tirage il n’y a que deux issues : $S$ et $\conj{S}$.
    Ainsi $Z$ suit la loi binomiale de paramètres $n=50$ et $p=0,08$.
    $\quad$
    b. On a :
    $\begin{align*} p(Z\pg 2)&=1-p(Z=0)-p(Z=1) \\
    &=1-0,92^{50}-\dbinom{50}{1}0,08\times 0,92^{49} \\
    &=1-0,92^{50}-50\times 0,08\times 0,92^{49} \\
    &\approx 0,92\end{align*}$
    La probabilité qu’au moins deux courriels choisis soient du spam est environ égale à $0,92$.
    $\quad$

 

Ex 2

Exercice 2 (5 points)

  1. Si $t=-2$ on obtient alors $\begin{cases} x=-3\\y=-4\\z=6\end{cases}$
    Le point $N(-3;-4;6)$ appartient donc à la droite $\Delta$.
    Réponse B
    $\quad$
  2. $\vect{AB}$ a pour coordonnées $\begin{pmatrix} 2-1\\1-0\\0-2\end{pmatrix}$ soit $\begin{pmatrix} 1\\1\\-2\end{pmatrix}$
    Réponse C
    $\quad$
  3. La droite $(AB)$ passe par le point $B(2;1;0)$ et a pour vecteur directeur $\vect{AB}\begin{pmatrix} 1\\1\\-2\end{pmatrix}$ mais également le vecteur $-\vect{AB}\begin{pmatrix} -1\\-1\\2\end{pmatrix}$
    Ainsi, une représentation paramétrique de $(AB)$ est $\begin{cases} x=2-t\\y=1-t\\z=2t\end{cases}\quad, t\in \R$.
    Réponse B
    $\quad$
  4. Un vecteur directeur de $\Delta$ est $\vec{n}\begin{pmatrix}2\\1\\-1\end{pmatrix}$
    Ainsi une équation cartésienne de ce plan est de la forme $2x+y-z+d=0$.
    Le point $C(0;1;2)$ appartient à ce plan.
    Donc $0+1-2+d=0 \ssi d=1$.
    Une équation cartésienne du plan est $2x+y-z+1=0$.
    Réponse B
    $\quad$
  5. On a
    $\begin{align*} \vect{AD}&=\vect{AO}+\vect{OD} \\
    &=\vect{AO}+3\vect{OA}-\vect{OB}-\vect{OC} \\
    &=2\vect{OA}-\vect{OB}-\vect{OC} \\
    &=\vect{BO}+\vect{OA}+\vect{CO}+\vect{OA} \\
    &=\vect{BA}+\vect{CA}\end{align*}$
    Ainsi les vecteurs $\vect{AD}$, $\vect{AB}$ et $\vect{AC}$ sont coplanaires.
    Réponse A
    $\quad$

 

 

Ex 3

Exercice 3 (6 points)

Partie 1

  1. $\lim\limits_{x\to -\infty} -2x=+\infty$ et $\lim\limits_{X\to +\infty} \e^X=+\infty$ donc $\lim\limits_{x\to -\infty} -\e^{-2x}=-\infty$
    Ainsi $\lim\limits_{x\to -\infty} f(x)=-\infty$
    $\lim\limits_{x\to +\infty} -2x=-\infty$ et $\lim\limits_{X\to -\infty} \e^X=0$ donc $\lim\limits_{x\to +\infty} -\e^{-2x}=0$
    Ainsi $\lim\limits_{x\to +\infty} f(x)=+\infty$
    $\quad$
  2. La fonction $f$ est dérivable sur $\R$ en tant que somme et composée de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a
    $\begin{align*} f'(x)&=1-(-2)\e^{-2x} \\
    &=1+2\e^{-2x}\\
    &>0\end{align*}$
    La fonction $f$ est donc strictement croissante sur $\R$.
    On obtient le tableau de variation suivant :
    $\quad$

    $\quad$
  3. La fonction $f$ est continue (car dérivable) et strictement croissante sur $\R$.
    De plus $\lim\limits_{x\to -\infty} f(x)=-\infty$ et $\lim\limits_{x\to +\infty} f(x)=+\infty$
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $f(x)=0$ admet une unique solution sur $\R$.
    D’après la calculatrice $\alpha \approx 0,43$.
    $\quad$
  4. La fonction $f$ est strictement croissante sur $\R$ et s’annule en $\alpha$.
    Donc :
    – $f(x)<0$ sur $]-\infty;\alpha[$;
    – $f(\alpha)=0$;
    – $f(x)>0$ sur $]\alpha;+\infty[$.
    $\quad$

Partie II

  1. a. La fonction $t\mapsto t^2+\e^{-2t}$ est dérivable sur $\R$ en tant que somme de fonctions dérivables sur $\R$. Cette fonction est de plus positive en tant que somme de fonctions positives.
    La fonction $h$ est donc dérivable sur $\R$.
    Pour tout réel $x$ on a
    $\begin{align*} h'(t)&=\dfrac{2t-2\e^{-2t}}{2\sqrt{t^2+\e^{-2t}}} \\
    &=\dfrac{t-\e^{-t}}{\sqrt{t^2+\e^{-2t}}} \\
    &=\dfrac{h(t)}{\sqrt{t^2+\e^{-2t}}}\end{align*}$
    $\quad$
    b. $h'(x)$ a donc le même signe que $f(x)$ pour tout réel $x$.
    D’après la question I.4. on a donc :
    – $h'(x)<0$ sur $]-\infty;\alpha[$;
    – $h'(\alpha)=0$;
    – $h(x)>0$ sur $]\alpha;+\infty[$.
    Ainsi $h$ admet un minimum en $\alpha$.
    Le point $A\left(\alpha,g(\alpha)\right)$, c’est-à-dire $A\left(\alpha,\e^{-\alpha}\right)$, est le point de la courbe $\mathscr{C}$ pour lequel la longueur $OM$ est minimale.
    $\quad$
  2. a. Le coefficient directeur de la tangente $T$ est $g'(\alpha)=-\e^{-\alpha}$.
    $\quad$
    b. Le produit des deux coefficients directeurs est :
    $\begin{align*} -\e^{-\alpha}\times \dfrac{\e^{-\alpha}}{\alpha}&=-\dfrac{\e^{-2\alpha}}{\alpha} \\
    &=-\dfrac{\alpha}{\alpha} \quad \text{car }f(\alpha)=0 \ssi \e^{-2\alpha}=\alpha  \\
    &=-1\end{align*}$
    Les droites $(OA)$ et $T$ sont donc perpendiculaires.
    $\quad$

$\quad$

Ex A

Exercice A (5 points)

  1. On a $u_1=\dfrac{3\times 16+2\times 5}{5}=11,6$.
    et $v_1=\dfrac{16+5}{2}=10,5$
    $\quad$
  2. a. Soit $n\in \N$.
    $\begin{align*} w_{n+1}&=u_{n+1}-v_{n+1} \\
    &=\dfrac{3u_n+2v_n}{5}-\dfrac{u_n+v_n}{2} \\
    &=\dfrac{6u_n+4v_n-5u_n-5v_n}{10} \\
    &=\dfrac{u_n-v_n}{10} \\
    &=0,1 w_n\end{align*}$
    La suite $\left(w_n\right)$ est donc géométrique de raison $0,1$ et de premier terme $w_0=u_0-v_0=11$.
    Ainsi, pour tout $n\in \N$ on a $w_n=11\times 0,1^n$.
    $\quad$
    b. Pour tout $n\in \N$ on a $w_n\pg 0$ en tant que produit de facteurs positifs.
    De plus $-1<0,1<1$ donc $\lim\limits_{n\to +\infty} w_n=0$.
    $\quad$
  3. a. Soit $n\in \N$. On a
    $\begin{align*} u_{n+1}-u_n&=\dfrac{3u_n+2v_n}{5}-u_n \\
    &=\dfrac{3u_n+2v_n-5u_n}{5} \\
    &=\dfrac{-2u_n+2v_n}{5} \\
    &=-\dfrac{2}{5} \times \left(u_n-v_n\right) \\
    &=-0,4w_n\end{align*}$
    $\quad$
    b. $w_n\pg 0$ et $u_{n+1}-u_n=-0,4w_n$ pour tout $n\in \N$.
    Ainsi $u_{n+1}-u_n \pp 0$ pour tout $n\in \N$.
    La suite $\left(u_n\right)$ est donc décroissante.
    On admet que la suite $\left(v_n\right)$ est croissante et on sait que $v_0=5$.
    Ainsi, pour tout $n\in \N$ on a $v_n\pg v_0$ soit $v_n\pg 5$.
    $\quad$
    c. Initialisation : On a $u_0=16$ donc $u_0\pg 5$.
    La propriété est vraie au rang $0$.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose que la propriété est vraie au rang $n$.
    $\begin{align*} u_{n+1}&=\dfrac{3u_n+2v_n}{5} \\
    &\pg \dfrac{3\times 5+2\times 5}{5} \\
    &\pg 5\end{align*}$
    La propriété est donc vraie au rang $n+1$.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Ainsi, pour tout $n\in \N$ on a $u_n \pg 5$.
    $\quad$
    La suite $\left(u_n\right)$ est donc décroissante et minorée par $5$. Elle est par conséquent convergente.
    $\quad$
  4. a. Pour tout $n\in \N$ on a $w_n=u_n-v_n$ et $\lim\limits_{n\to +\infty} w_n=0$.
    Or $\lim\limits_{n\to +\infty} u_n-v_n=\ell-\ell’$
    Ainsi $\ell-\ell’=0 \ssi \ell=\ell’$.
    $\quad$
    b. Soit $n\in \N$
    $\begin{align*} c_{n+1}&=5u_{n+1}+4v_{n+1} \\
    &=3u_n+2v_n+2\left(u_n+v_n\right) \\
    &=3u_n+2v_n+2u_n+2v_n\\
    &=5u_n+4v_n\\
    &=w_n\end{align*}$
    La suite $\left(c_n\right)$ est donc constante.
    Or $c_0=5u_0+4v_0=100$.
    Ainsi, pour tout $n\in \N$ on a $c_n=100$.
    $\quad$
    c. Or $\lim\limits_{n\to +\infty} c_n=5\ell+4\ell’$ soit $\lim\limits_{n\to +\infty} c_n=9\ell$ puisque $\ell=\ell’$.
    Par conséquent $9\ell=100 \ssi \ell=\dfrac{100}{9}$.
    $\quad$

Remarque : On dit que les suites $\left(u_n\right)$ et $\left(v_n\right)$ sont adjacentes.

Ex B

Exercice B (5 points)

Partie 1

  1. $f(x)=0\ssi 2\ln(x)-1=0 \ssi \ln(x)=\dfrac{1}{2}\ssi x=\e^{1/2}$.
    Ainsi l’équation $f(x)=0$ possède une unique solution $\alpha=\e^{1/2}\approx 1,65$.
    $\quad$
  2. Graphiquement :
    – $f(x)<0$ sur $]0;\alpha[$;
    – $f(\alpha)=0$;
    – $f(x)>0$ sur $]\alpha;+\infty[$
    $\quad$

Partie II

  1. a. Pour tout $x>0$ on a $g(x)=\ln(x)\left(\ln(x)-1\right)$
    Or $\lim\limits_{x\to 0^-} \ln(x)=-\infty$ donc $\lim\limits_{x\to 0^-} \ln(x)-1=-\infty$.
    Ainsi $\lim\limits_{x\to 0^-} g(x)=+\infty$.
    $\quad$
    b. $\lim\limits_{x\to +\infty} \ln(x)=+\infty$ donc $\lim\limits_{x\to +\infty} \ln(x)-1=+\infty$.
    Ainsi $\lim\limits_{x\to +\infty} g(x)=+\infty$.
    $\quad$
  2. La fonction $g$ est dérivable sur $]0;+\infty[$ comme produit et somme de fonctions dérivables sur cet intervalle.
    Pour tout $x>0$ on a
    $\begin{align*} g'(x)&=2\dfrac{1}{x}\times \ln(x)-\dfrac{1}{x} \\
    &=\dfrac{2\ln(x)-1}{x} \\
    &=f(x)\end{align*}$
    $\quad$
  3. On obtient le tableau de variations suivant :
    $\quad$

    On a en effet $\alpha=\e^{1/2}$ donc $g(\alpha)=\dfrac{1}{4}-\dfrac{1}{2}=-\dfrac{1}{4}$
    $\quad$
  4. La fonction $g$ est continue (car dérivable) et strictement décroissante sur $]0;\alpha[$.
    De plus $\lim\limits_{x\to 0^+} g(x)=+\infty$ et $f(\alpha)=-0,25<m$
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $g(x)=m$ possède une unique solution sur $]0;\alpha[$.
    $\quad$
    La fonction $g$ est continue (car dérivable) et strictement croissante sur $]\alpha;+\infty[$.
    De plus $\lim\limits_{x\to +\infty} g(x)=+\infty$ et $f(\alpha)=-0,25<m$
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $g(x)=m$ possède une unique solution sur $]\alpha;+\infty[$.
    $\quad$
    De plus $g(\alpha)\neq m$.
    L’équation $g(x)=m$ possède donc exactement deux solutions sur $\R$ pour tout $m>-0,25$.
    $\quad$
  5. $g(x)=0 \ssi \ln(x)\left(\ln(x)-1\right)=0 \ssi \ln(x)=0$ ou $\ln(x)=1$
    Ainsi $g(x)=0 \ssi x=1$ ou $x=\e$
    Les solutions de l’équation $g(x)=0$ sont donc $1$ et $\e$.
    $\quad$

 

 

 

 

Énoncé

Télécharger (PDF, 111KB)

Si l’énoncé ne s’affiche pas directement rafraîchissez l’affichage.