Bac – Spécialité mathématiques – Nouvelle Calédonie- sujet 2 – 27 octobre 2022

Nouvelle Calédonie – 27 octobre 2022

Spécialité maths – Sujet 2 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. a. On obtient l’arbre pondéré suivant :
    $\quad$

    $\quad$
    b. On a
    $\begin{align*} p\left(\conj{D}\cap R\right)&=p\left(\conj{D}\right)\times p_{\conj{D}}(R) \\
    &=\dfrac{3}{4}\times 0,35 \\
    &=0,262~5\end{align*}$
    $\quad$
    c. $\left(D,\conj{D}\right)$ forme un système complet d’événements fini.
    D’après la formule des probabilités totales on a :
    $\begin{align*} p(R)&=p(R\cap D)+ p\left(\conj{D}\cap R\right) \\
    &=p(D)\times p_D(R)+0,262~5 \\
    &=\dfrac{1}{4}\times 0,6+0,262~5 \\
    &=0,412~5\end{align*}$
    La probabilité que Stéphanie réussisse un tir est bien égale à $0,412~5$.
    $\quad$
    d. On veut calculer :
    $\begin{align*} p_R\left(\conj{D}\right)&=\dfrac{p\left(R\cap \conj{D}\right)}{p(R)} \\
    &=\dfrac{0,262~5}{0,412~5} \\
    &\approx 0,64\end{align*}$
    La probabilité qu’il s’agisse d’un tir à trois points si Stéphanie réussit un tir est environ égale à $0,64$.
    $\quad$
  2. a. On répète $10$ fois de façon indépendantes la même expérience de Bernoulli de paramètre $0,35$.
    $X$ suit donc la loi binomiale de paramètres $n=10$ et $p=0,35$.
    $\quad$
    b. L’espérance de $X$ est :
    $\begin{align*} E(X)&=10\times 0,35 \\
    &=3,5\end{align*}$
    Sur $100$ tirs à trois points elle en réussit donc en moyenne $35$.
    $\quad$
    c. On veut calculer $P(X\pp 6)\approx 0,97$.
    La probabilité que Stéphanie rate $4$ tirs ou plus est environ égale à $0,97$.
    $\quad$
    d. On veut calculer $P(X\pg 6)=1-P(X\pp 5)\approx 0,09$.
    La probabilité que Stéphanie rate au plus $4$ tirs est environ égale à $0,09$.
    $\quad$
  3. On note $Y$ la variable aléatoire qui compte le nombre de tirs réussis.
    On répète $n$ fois de façon indépendantes la même expérience de Bernoulli de paramètre $0,35$.
    $Y$ suit donc la loi binomiale de paramètres $n$ et $p=0,35$
    On veut déterminer le plus plus petit entier naturel $n$ tel que :
    $\begin{align*} p(Y\pg 1)\pg 0,99 &\ssi 1-P(X=0)\pg 0,99 \\
    &\ssi P(X=0) \pp 0,01 \\
    &\ssi 0,65^n \pp 0,01 \\
    &\ssi n\ln(0,65) \pp \ln(0,01) \\
    &\ssi n\pg \dfrac{\ln(0,01)}{\ln(0,65)}\quad \text{car } \ln(0,65)>0\end{align*}$
    Or $\dfrac{\ln(0,01)}{\ln(0,65)}\approx 10,69$.
    La plus petite valeur de $n$ telle que la probabilité que Stéphanie réussisse au moins un tir parmi les $n$ tirs soit supérieure ou égale à $0,99$ est donc $11$.
    $\quad$

 

Ex 2

Exercice 2

  1. a. La fonction $f$ est dérivable sur $]0;+\infty[$ par hypothèse.
    Pour tout $x>0$ on a
    $\begin{align*} f'(x)&=\ln(x)+x\times \dfrac{1}{x}-1 \\
    &=\ln(x)+1-1\\
    &=\ln(x)\end{align*}$
    $\quad$
    b. On a $f(\e)=-2$ et $f'(\e)=1$.
    Une équation de la tangente $T$ est donc $y=1\times (x-\e)-2$ soit $y=x-\e-2$.
    $\quad$
    c. Par hypothèse la fonction $f$ est deux fois dérivables sur $]0;+\infty[$.
    Par conséquent, pour tout réel $x>0$ on a $f\dsec(x)=\dfrac{1}{x}>0$.
    La fonction $f$ est donc convexe sur $]0;+\infty[$.
    $\quad$
    d. La fonction $f$ est convexe sur $]0;+\infty[$. La courbe $\mathscr{C}_f$ est donc au-dessus de toutes ses tangentes.
    Ainsi $\mathscr{C}_f$ est au-dessus de $T$.
    $\quad$
  2. a. Par croissances comparées $\lim\limits_{x\to 0} x\ln(x)=0$. Donc $\lim\limits_{x\to 0} f(x)=-2$.
    $\quad$
    b. Pour tout réel $x>0$ on a $f(x)=x\left(\ln(x)-1-\dfrac{2}{x}\right)$.
    Or $\lim\limits_{x\to +\infty} \ln(x)=+\infty$ et $\lim\limits_{x\to +\infty} \dfrac{1}{x}=0$.
    Donc $\lim\limits_{x\to +\infty} f(x)=+\infty$.
    $\quad$
  3. $\ln(x)=0\ssi x=1$ et $\ln(x)>0 \ssi x>1$
    On obtient donc le tableau de variations suivant :
    $\quad$

    $\quad$
  4. a. Pour tout réel $x\in ]0;1]$ on a, d’après la question précédente, $f(x)<-2$. L’équation $f(x)=0$ n’admet donc aucune solution sur l’intervalle $]0;1]$.
    La fonction $f$ est continue (car dérivable) et strictement croissante sur l’intervalle $[1;+\infty[$.
    $f(1)=-3<0$ et $\lim\limits_{x\to +\infty} f(x)=+\infty$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $f(x)=0$ admet une unique solution sur l’intervalle $[1;+\infty[$.
    Ainsi l’équation $f(x)=0$ admet une unique solution sur $]0;+\infty[$.
    $\quad$
    b. $f(4,3)\approx -0,03<0$ et $f(4,4)\approx 0,12>0$.
    Donc $f(4,3)<f(\alpha)<f(4,4)$.
    La fonction $f$ est strictement croissante sur l’intervalle $[4,3;4;4]$.
    Par conséquent $4,3<\alpha<4,4$.
    Ainsi $\alpha\in ]4,3;4,4[$.
    $\quad$
    c. D’après les questions précédentes :
    $\bullet$ $f(x)<0$ sur $]0;\alpha[$;
    $\bullet$ $f(\alpha)=0$;
    $\bullet$ $f(x)>0$ sur $]\alpha;+\infty[$.
    $\quad$
  5. $\texttt{seuil(0.01)}$ renvoie la valeur $4,32$.
    Il s’agit d’une valeur approchée à $10^{-2}$ près de $\alpha$.
    $\quad$

 

Ex 3

Exercice 3

  1. On a $B(6;4;0)$, $E(0;4;4)$, $F(6;4;4)$ et $G(6;0;4)$.
    $\quad$
  2. Le volume du toit est
    $\begin{align*}V_{pyramide}&=\dfrac{1}{3}\times 6\times 4\times (6-4) \\
    &=16\end{align*}$
    Le volume de $EFGHS$ est donc égale à $16$ u.v.
    Le volume du parallélépipède est :
    $\begin{align*} V_{parallélépipède}&=6\times 4\times 4\\
    &=96\end{align*}$
    Le volume de la maison est donc $V=16+96=112$ u.v.
    $\dfrac{16}{112}=\dfrac{1}{7}$
    Le volume de la pyramide $EFGHS$ représente bien le septième du volume total de la maison.
    $\quad$
  3. a. On a $\vect{EF}\begin{pmatrix} 6\\0\\0\end{pmatrix}$ et $\vect{ES}\begin{pmatrix}3\\-2\\2\end{pmatrix}$.
    Ces deux vecteurs sont clairement non colinéaires.
    Ainsi $\vec{n}.\vect{EF}=0+0+0=0$ et $\vec{n}.\vect{ES}=0-2+2=0$.
    Le vecteur $\vec{n}$ est donc orthogonal à deux vecteurs non colinéaires du plan $(EFS)$. Il est, par conséquent, normal au plan $(EFS)$.
    $\quad$
    b. Une équation cartésienne du plan $(EFS)$ est donc de la forme $y+z+d=0$.
    Le point $E(0;4;4)$ appartient au plan $(EFS)$.
    Donc $4+4+d=0 \ssi d=-8$.
    Une équation cartésienne du plan $(EFS)$ est donc $y+z-8=0$.
    $\quad$
  4. a. La droite $(PQ)$ est dirigée par $\vec{k}$ et passe par $Q(2;3;5,5)$.
    Une représentation paramétrique de la droite $(PQ)$ est donc $$\begin{cases} x=2\\y=3\\z=5,5+t\end{cases} \qquad t\in \R$$
    $\quad$
    b. Le point $P$ est le point d’intersection de la droite $(PQ)$ et du plan $(EFS)$. Déterminons les coordonnées de ce point à l’aide du système :
    $\begin{align*}\begin{cases} y+z-8=0 \\x=2\\y=3\\z=5,5+t\end{cases} &\ssi \begin{cases}x=2\\y=3\\z=5,5+t\\3+5,5+t-8=0\end{cases} \\
    &\ssi \begin{cases} x=2\\y=3\\t=-0,5\\z=5\end{cases}\end{align*}$
    Ainsi $P$ a pour coordonnées $(2;3;5)$.
    $\quad$
    c. On a alors $\vect{PQ}\begin{pmatrix}0\\0\\0,5\end{pmatrix}$.
    Ainsi $PQ=0,5$.
    $\quad$
  5. Un vecteur directeur de $\Delta$ est $\vec{u}\begin{pmatrix} 6\\-4\\4\end{pmatrix}$
    $\vec{k}$ et $\vec{u}$ ne sont pas colinéaires. Les droites $(PQ)$ et $\Delta$ ne sont donc pas parallèles.
    Déterminons si elles sont sécantes.
    $\begin{align*} \begin{cases} x=2\\y=3\\z=5,5+t\\x=-4+6s\\y=7-4s\\z=2+4s\end{cases}&\ssi \begin{cases} x=2\\y=3\\z=5,5+t\\-4+6s=2\\7-4s=3\\z=2+4s\end{cases} \\
    &\ssi \begin{cases} x=2\\y=3\\s=1\\z=2+4s\\z=5,5+t \end{cases} \\
    &\ssi \begin{cases} x=2\\y=3\\z=6\\s=1\\t=0,5\end{cases}\end{align*}$
    Les droites $(PQ)$ et $\Delta$ sont donc sécantes. Leur point d’intersection a pour coordonnées $(2;3;6)$.
    L’oiseau passe donc $0,5$ unité au-dessus de l’antenne. Par conséquent, il ne la percute pas.
    $\quad$

 

Ex 4

Exercice 4

  1. Pour tout $n\in \N$ on a $-1\pp (-1)^n \pp 1$ donc $-\dfrac{1}{n+1}\pp u_n \pp \dfrac{1}{n+1}$.
    Or $\lim\limits_{n\to +\infty} \dfrac{1}{n+1}=0$.
    D’après le théorème des gendarmes $\lim\limits_{n\to +\infty} u_n=0$.
    Réponse D
    $\quad$
  2. On a :
    $\begin{align*} w_0&=\e^{-2\ln(a)}+2 \\
    &=a^{-2}+2 \\
    &=\dfrac{1}{a^2}+2\end{align*}$
    Réponse A
    $\quad$
  3. La suite $\left(v_n\right)$ est décroissante.
    Pour tout $n\in \N$
    $\begin{align*} v_n\pp v_{n+1} &\ssi -2v_n\pg -2v_{n+1} \\
    &\ssi \e^{-2v_n}\pg \e^{-2v_{n+1}} \\
    &\ssi w_n\pg w_{n+1}\end{align*}$
    La suite $\left(w_n\right)$ est donc décroissante.
    La fonction exponentielle est strictement positive. Par conséquent, pour tout $n\in \N$, $\e^{-2v_n}>0$ et $w_n>2$.
    Réponse B
    $\quad$
  4. Montrons que la bonne réponse est la B.
    Il suffisait ici de calculer les premiers termes de chacune des $5$ suites pour déterminer que seule la proposition convenait.
    $-\dfrac{2}{3^0}+4=2$ ce qui correspond bien à $a_0=2$.
    $\begin{align*} -\dfrac{2}{3^{n+1}}+4&=\dfrac{1}{3}\times \dfrac{-2}{3^n}+4 \\
    &=\dfrac{1}{3}\left(-\dfrac{2}{3^n}+4-4\right)+4 \\
    &=\dfrac{1}{3}\left(-\dfrac{2}{3^n}+4\right)-\dfrac{4}{3}+4 \\
    &=\dfrac{1}{3}\left(-\dfrac{2}{3^n}+4\right)+\dfrac{8}{3}\end{align*}$
    On retrouve bien la relation de récurrence $a_{n+1}=\dfrac{1}{3}a_n+\dfrac{8}{3}$.
    Réponse B
    $\quad$
  5. Pour tout $n\in \N$ on a $b_{n+1}-b_n=\ln\left(\dfrac{2}{\left(b_n\right)^2+3}\right)$.
    Or $\left(b_n\right)^2+3>2$ donc $\ln\left(\dfrac{2}{\left(b_n\right)^2+3}\right)<0$.
    La suite $\left(b_n\right)$ est par conséquent décroissante.
    Réponse B
    $\quad$
  6. $\lim\limits_{x\to 0^+} \dfrac{1}{x}=+\infty$ donc $\lim\limits_{x\to 0^+} g(x)=+\infty$.
    La droite d’équation $x=0$ est asymptote à la courbe $\mathscr{C}_g$.
    Par croissances comparées, $\lim\limits_{x\to +\infty} g(x)=+\infty$.
    La courbe $\mathscr{C}_g$ ne possède pas d’asymptote horizontale.
    Réponse B
    $\quad$
  7. On considère la fonction $F$ définie sur $\R$ par $F(x)=\dfrac{1}{2}\e^{x^2+1}$
    $F$ est dérivable sur $\R$ en tant que composée de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a
    $\begin{align*} F'(x)&=\dfrac{1}{2}\times 2x\e^{x^2+1} \\
    &=f(x)\end{align*}$
    Réponse D
    $\quad$
    Remarque : On pouvait également déterminer, à vue, une primitive de $f$. En effet, pour tout réel $x$, on a
    $\begin{align*}f(x)&=x\e^{x^2+1} \\
    &=\dfrac{1}{2}\times 2x\e^{x^2+1}\end{align*}$
    Ainsi $f(x)$ est de la forme $\dfrac{1}{2}u'(x)\e^{u(x)}$ où $u(x)=x^2+1$.
    Une primitive de $f$ est donc la fonction $F$ définie sur $\R$ par $F(x)=\dfrac{1}{2}\e^{u(x)}$ soit $F(x)=\dfrac{1}{2}\e^{x^2+1}$.
    $\quad$

 

Énoncé

Le sujet propose 4 exercices.
Le candidat choisit 3 exercices parmi les 4 et ne doit traiter que ces 3 exercices.

Exercice 1     7 points

Principaux domaines abordés : probabilités

Au basket-ball, il existe deux sortes de tir :

  • les tirs à deux points.
    Ils sont réalisés près du panier et rapportent deux points s’ils sont réussis.
  • les tirs à trois points.
    Ils sont réalisés loin du panier et rapportent trois points s’ils sont réussis.

Stéphanie s’entraîne au tir. On dispose des données suivantes :

  • Un quart de ses tirs sont des tirs à deux points. Parmi eux, $60 \%$ sont réussis.
  • Trois quarts de ses tirs sont des tirs à trois points. Parmi eux, $35\%$ sont réussis.
  1. Stéphanie réalise un tir.
    On considère les évènements suivants :
    $D$ : « Il s’agit d’un tir à deux points ».
    $R$ : « le tir est réussi ».
    a. Représenter la situation à l’aide d’un arbre de probabilités.
    $\quad$
    b. Calculer la probabilité $p\left(\conj{D} \cap R\right)$.
    $\quad$
    c. Démontrer que la probabilité que Stéphanie réussisse un tir est égale à $0,412~5$.
    $\quad$
    d. Stéphanie réussit un tir. Calculer la probabilité qu’il s’agisse d’un tir à trois points.
    Arrondir le résultat au centième.
    $\quad$
  2. Stéphanie réalise à présent une série de $10$ tirs à trois points.
    On note $X$ la variable aléatoire qui compte le nombre de tirs réussis.
    On considère que les tirs sont indépendants. On rappelle que la probabilité que Stéphanie réussisse un tir à trois points est égale à $0,35$.
    a. Justifier que $X$ suit une loi binomiale. Préciser ses paramètres.
    $\quad$
    b. Calculer l’espérance de $X$. Interpréter le résultat dans le contexte de l’exercice.
    $\quad$
    c. Déterminer la probabilité que Stéphanie rate $4$ tirs ou plus. Arrondir le résultat au centième.
    $\quad$
    d. Déterminer la probabilité que Stéphanie rate au plus $4$ tirs. Arrondir le résultat au centième.
    $\quad$
  3. Soit $n$ un entier naturel non nul.
    Stéphanie souhaite réaliser une série de $n$ tirs à trois points.
    On considère que les tirs sont indépendants. On rappelle que la probabilité qu’elle réussisse un tir à trois points est égale à $0,35$.
    Déterminer la valeur minimale de $n$ pour que la probabilité que Stéphanie réussisse au moins un tir parmi les n tirs soit supérieure ou égale à $0,99$.
    $\quad$

$\quad$

Exercice 2     7 points

Principaux domaines abordés : fonctions, fonction logarithme.

Soit $f$ la fonction définie sur l’intervalle $]0 ; +\infty[$ par :
$$f(x) = x\ln(x)-x-2$$
On admet que la fonction $f$ est deux fois dérivable sur $]0 ; +\infty[$.
On note $f’$ sa dérivée, $f\dsec$ sa dérivée seconde et $\mathscr{C}_f$ sa courbe représentative dans un repère.

  1. a. Démontrer que, pour tout $x$ appartenant à $]0 ; +\infty[$, on a $f'(x) = \ln(x)$.
    $\quad$
    b. Déterminer une équation de la tangente $T$ à la courbe $\mathscr{C}_f$ au point d’abscisse $x =\e$.
    $\quad$
    c. Justifier que la fonction $f$ est convexe sur l’intervalle $]0 ; +\infty[$.
    $\quad$
    d. En déduire la position relative de la courbe $\mathscr{C}_f$ et de la tangente $T$.
    $\quad$
  2. a. Calculer la limite de la fonction $f$ en $0$.
    $\quad$
    b. Démontrer que la limite de la fonction $f$ en $+\infty$ est égale à $+\infty$.
    $\quad$
  3. Dresser le tableau de variations de la fonction $f$ sur l’intervalle $]0 ; +\infty[$.
    $\quad$
  4. a. Démontrer que l’équation $f (x) = 0$ admet une unique solution dans l’intervalle $]0 ; +\infty[$. On note $\alpha$ cette solution.
    $\quad$
    b. Justifier que le réel $\alpha$ appartient à l’intervalle $]4,3; 4,4[$.
    $\quad$
    c. En déduire le signe de la fonction $f$ sur l’intervalle $]0 ; +\infty[$.
    $\quad$
  5. On considère la fonction $\texttt{seuil}$ suivante écrite dans le langage Python :
    On rappelle que la fonction $\texttt{log}$ du module $\texttt{math}$ (que l’on suppose importé) désigne
    la fonction logarithme népérien $\ln$.$$\begin{array}{|l|}
    \hline
    \text{def seuil(pas) :}\\
    \quad  \text{x=4.3}\\
    \quad  \text{while x*log (x) – x – 2 < 0:}\\
    \qquad  \text{x=x+pas}\\
    \quad  \text{return x}\\
    \hline
    \end{array}$$
    Quelle est la valeur renvoyée à l’appel de la fonction $\texttt{seuil(0.01)}$?
    Interpréter ce résultat dans le contexte de l’exercice.
    $\quad$

$\quad$

Exercice 3     7 points

Principaux domaines abordés : géométrie dans l’espace

Une maison est modélisée par un parallélépipède rectangle $ABCDEFGH$ surmonté d’une pyramide $EFGHS$.
On a $DC = 6$, $DA = DH = 4$.
Soit les points $I$, $J$ et $K$ tels que $\vect{DI}=\dfrac{1}{6}\vect{DC}$, $\vect{DJ}=\dfrac{1}{4}\vect{DA}$, $\vect{DK}=\dfrac{1}{4}\vect{DH}$.
On note $\vec{i}=\vect{DI}$, $\vec{j}=\vect{DJ}$, $\vec{k}=\vect{DK}$.
On se place dans le repère orthonormé $\left(D;\vec{i},\vec{j},\vec{k}\right)$.
On admet que le point $S$ a pour coordonnées $(3; 2; 6)$.

  1. Donner, sans justifier, les coordonnées des points $B$, $E$, $F$ et $G$.
    $\quad$
  2. Démontrer que le volume de la pyramide $EFGHS$ représente le septième du volume total de la maison.
    On rappelle que le volume $V$ d’un tétraèdre est donné par la formule : $$V =\dfrac{1}{3}\times \text{(aire de la base)}\times \text{hauteur}$$
    $\quad$
  3. a. Démontrer que le vecteur $\vec{n}$ de coordonnées $\begin{pmatrix}0\\1\\1\end{pmatrix}$ est normal au plan $(EFS)$.
    $\quad$
    b. En déduire qu’une équation cartésienne du plan $(EFS)$ est $y +z-8 = 0$.
    $\quad$
  4. On installe une antenne sur le toit, représentée par le  segment $[PQ]$. On dispose des
    données suivantes :
    $\bullet$ le point $P$ appartient au plan $(EFS)$;
    $\bullet$ le point $Q$ a pour coordonnées $(2; 3; 5,5)$;
    $\bullet$ la droite $(PQ)$ est dirigée par le vecteur $\vec{k}$.
    a. Justifier qu’une représentation paramétrique de la droite $(PQ)$ est :
    $$\begin{cases}x=2\\y = 3\\z = 5,5+t\end{cases} \quad (t \in \R)$$
    b. En déduire les coordonnées du point $P$.
    $\quad$
    c. En déduire la longueur $PQ$ de l’antenne.
    $\quad$
  5. Un oiseau vole en suivant une trajectoire modélisée par la droite $\Delta$ dont une représentation paramétrique est : $$\begin{cases} x=-4+6s\\y=7-4s\\z=2+4s\end{cases} \quad (s\in \R)$$
    Déterminer la position relative des droites $(PQ)$ et $\Delta$.
    L’oiseau va-t-il percuter l’antenne représentée par le segment $[PQ]$?
    $\quad$

$\quad$

Exercice 4     7 points

Principaux domaines abordés : : suites, fonctions, primitives

Cet exercice est un questionnaire à choix multiples.
Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte.
Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point.
Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie.
Aucune justification n’est demandée

  1. On considère la suite $\left(u_n\right)$ définie pour tout entier naturel $n$ par $$u_n=\dfrac{(-1)^n}{n+1}$$
    On peut affirmer que :
    a. la suite $\left(u_n\right)$ diverge vers $+\infty$.
    b. la suite $\left(u_n\right)$ diverge vers $-\infty$.
    c. la suite $\left(u_n\right)$ n’a pas de limite.
    d. la suite $\left(u_n\right)$ converge.
    $\quad$

Dans les questions 2 et 3, on considère deux suites $\left(v_n\right)$ et $\left(w_n\right)$ vérifiant la relation : $$w_n=\e^{-2v_n}+2$$

  1. . Soit $a$ un nombre réel strictement positif. On a $v_0 = \ln(a)$.
    a. $w_0=\dfrac{1}{a^2}+2$
    b. $w_0=\dfrac{1}{a^2+2}$
    c. $w_0=-2a+2$
    d. $w_0=\dfrac{1}{-2a}+2$
    $\quad$
  2. On sait que la suite $\left(v_n\right)$ est croissante. On peut affirmer que la suite $\left(w_n\right)$ est :
    a. décroissante et majorée par $3$.
    b. décroissante et minorée par $2$.
    c. croissante et majorée par $3$.
    d. croissante et minorée par $2$.
    $\quad$
  3. On considère la suite $\left(a_n\right)$ ainsi définie : $$a_0=2 \text{ et, pour tout entier naturel }n,~~a_{n+1}=\dfrac{1}{3}a_n+\dfrac{8}{3}$$
    Pour tout entier naturel $n$, on a :
    a. $a_n=4\times \left(\dfrac{1}{3}\right)^n-2$
    b. $a_n=-\dfrac{2}{3^n}+4$
    c. $a_n=4-\left(\dfrac{1}{3}\right)^n$
    d. $a_n=2\times \left(\dfrac{1}{3}\right)^n+\dfrac{8n}{3}$
    $\quad$
  4. On considère une suite $\left(b_n\right)$ telle que, pour tout entier naturel $n$, on a : $$b_{n+1}=b_n+\ln\left(\dfrac{2}{\left(b_n\right)^2+3}\right)$$
    On peut affirmer que :
    a. la suite $\left(b_n\right)$ est croissante.
    b. la suite $\left(b_n\right)$ est décroissante.
    c. la suite $\left(b_n\right)$ n’est pas monotone.
    d. le sens de variation de la suite $\left(b_n\right)$ dépend de $b_0$.
    $\quad$
  5. On considère la fonction $g$ définie sur l’intervalle $]0 ; +\infty[$ par : $$g(x)=\dfrac{\e^x}{x}$$
    On note $\mathscr{C}_g$ la courbe représentative de la fonction $g$ dans un repère orthogonal.
    La courbe $\mathscr{C}_g$ admet :
    a. une asymptote verticale et une asymptote horizontale.
    b. une asymptote verticale et aucune asymptote horizontale.
    c. aucune asymptote verticale et une asymptote horizontale.
    d. aucune asymptote verticale et aucune asymptote horizontale.
    $\quad$
  6. Soit $f$ la fonction définie sur $\R$ par $$f(x)=x\e^{x^2+1}$$
    Soit $F$ une primitive sur $\R$ de la fonction $f$. Pour tout réel $x$, on a :
    a. $F(x)=\dfrac{1}{2}x^2\e^{x^2+1}$
    b. $F(x)=\left(1+2x^2\right)\e^{x^2+1}$
    c. $F(x)=\e^{x^2+1}$
    d. $F(x)=\dfrac{1}{2}\e^{x^2+1}$
    $\quad$

$\quad$