E3C – Séries technologiques – Fonctions – Janvier 2020

E3C – Fonctions

Séries technologiques

Le chiffre d’affaire en milliers d’euros d’une entreprise en fonction du temps est modélisé par la fonction $f(x) = 3x\left(48x-5x^2\right)$ où $x$ exprimé en années est le temps écoulé depuis le 1$\ier$ janvier 2020.

  1. a. Développer $f(x)$.
    $\quad$
    b. En déduire $f'(x)$.
    $\quad$
    c. On admet que $f'(x)=-3x(15x-96)$. Dresser le tableau de variation de $f$.
    $\quad$.
    d. En déduire le maximum de $f$ sur $[0;10]$.
    $\quad$
  2. Compléter la ligne $10$ du programme écrit en Python ci-dessous afin qu’en fin d’exécution la variable $\text{M}$ contienne une valeur approchée du chiffre d’affaire maximal exprimé en milliers d’euros.
    $$\begin{array}{|c|l|}
    \hline
    1 &\text{def chiffresaffairesmax( ):} \\
    \hline
    2 &\hspace{1cm} \text{x=0}\\
    \hline
    4 &\hspace{1cm}\text{B = 3*x*(48*x – 5*x**2)}\\
    \hline
    5 &\hspace{1cm}\text{M=B}\\
    \hline
    6 &\hspace{1cm}\text{for k in range(100):}\\
    \hline
    7 &\hspace{2cm}\text{x=x+0.1}\\
    \hline
    8 &\hspace{2cm}\text{B= 3*x*(48*x – 5*x**2)}\\
    \hline
    9 &\hspace{2cm}\text{if B>M :}\\
    \hline
    10 &\hspace{3cm}\text{M=$\ldots$}\\
    \hline
    12 &\hspace{1cm}\text{return M}\\
    \hline
    \end{array}$$

$\quad$

$\quad$

Correction Exercice

  1. a. On a :
    $\begin{align*} f(x)&=3x\left(48x-5x^2\right) \\
    &=144x^2-15x^3\end{align*}$
    $\quad$
    b. On a :
    $\begin{align*} f'(x)&=144\times 2x-15\times 3x^2 \\
    &=288x-45x^2\end{align*}$
    $\quad$
    c. $-3x=0 \ssi x=0$ et $-3x>0 \ssi x<0$
    $15x-96=0 \ssi 15x=96 \ssi x= 6,4$ et $15x-96>0 \ssi 15x>96 \ssi x>6,4$
    On obtient alors le tableau de variations suivant :

    $\quad$
    d. D’après le tableau de variations précédent le maximum de la fonction $f$ sur l’intervalle $[0;10]$ est $1~966,08$.
    $\quad$
  2. On peut écrire
    $$\begin{array}{|c|l|}
    \hline
    1 &\text{def chiffresaffairesmax( ):} \\
    \hline
    2 &\hspace{1cm} \text{x=0}\\
    \hline
    4 &\hspace{1cm}\text{B = 3*x*(48*x – 5*x**2)}\\
    \hline
    5 &\hspace{1cm}\text{M=B}\\
    \hline
    6 &\hspace{1cm}\text{for k in range(100):}\\
    \hline
    7 &\hspace{2cm}\text{x=x+0.1}\\
    \hline
    8 &\hspace{2cm}\text{B= 3*x*(48*x – 5*x**2)}\\
    \hline
    9 &\hspace{2cm}\text{if B>M :}\\
    \hline
    10 &\hspace{3cm}\text{M=B}\\
    \hline
    12 &\hspace{1cm}\text{return M}\\
    \hline
    \end{array}$$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence