E3C – Séries technologiques – Fonctions – Janvier 2020

E3C – Fonctions

Séries technologiques

Une entreprise fabrique 𝑥 tonnes d’un certain produit, avec $x\in ∈ [0 ; 20]$. Le coût total de production de $x$ tonnes de produit, exprimé en milliers d’euros, est donné par : $$C(x)=x^3-30x^2+300x$$

  1. On suppose que toute la production est vendue. La recette totale, exprimée en milliers d’euros, est donnée par la fonction $r$ définie sur $[0 ; 20]$ par : $r(x) = 108x$. La fonction associée au bénéfice exprimé en milliers d’euros est donnée par la fonction $B$ définie pour tout $x$ de $[0 ; 20]$ par $B(x) = r(x)-C(x)$.
    Vérifier que pour tout réel $x$ appartenant à $[0 ; 20]$, on a : $B(x) = -x^3+30x^2-192x$.
    $\quad$
  2. Montrer que pour tout $x$ de $[0 ; 20]$, la fonction dérivée associée au bénéfice $B$ admet comme expression $B'(x)=3(4-x)(x-16)$.
    $\quad$
  3. Dresser le tableau de variations sur $[0 ; 20]$, de la fonction $B$.
    $\quad$
  4. En déduire la quantité que l’entreprise doit fabriquer et vendre pour obtenir un bénéfice maximal. Donner la valeur en milliers d‘euros de ce bénéfice.
    $\quad$
  5. Le directeur commercial de cette entreprise souhaite déterminer les quantités à produire et à vendre pour obtenir un bénéfice strictement positif. Il affirme que si l’entreprise fabrique et vend entre $8$ et $20$ tonnes de produit, alors son objectif est atteint, à savoir le bénéfice est strictement positif. Le chef de production quant à lui affirme qu’il faudrait fabriquer et vendre entre $10$ et $20$ tonnes pour atteindre l’objectif.
    Pour chacune des deux affirmations, dire si elle est vraie ou fausse en justifiant la réponse.
    $\quad$

$\quad$

Correction Exercice

  1. Pour tout réel $x\in[0;20]$ on a :
    $\begin{align*} B(x)&=R(x)-C(x) \\
    &=108x-\left(x^3-30x^2+300x\right)\\
    &=108x-x^3+30x^2-300x\\
    &=-x^3+30x^2-192x\end{align*}$
    $\quad$
  2. La fonction $B$ est dérivable sur $[0;20]$ en tant que fonction polynôme.
    Pour tout $x\in[0;20]$ on a d’une part :
    $\begin{align*} B'(x)&=-3x^2+30\times 2x-192\\
    &=-3x^2+60x-192\end{align*}$
    D’autre part :
    $\begin{align*} 3(4-x)(x-16)&=3\left(4x-64-x^2+16x\right) \\
    &=12x-192-3x^2+48x\\
    &=-3x^2+60x-192\end{align*}$
    Ainsi $B'(x)=3(4-x)(x-16)$.
    $\quad$
  3. $4-x=0 \ssi x=4$ et $4-x>0 \ssi x<4$
    $x-16=0 \ssi x=16$ et $x-16>0 \ssi x>16$
    On obtient donc le tableau de variations suivant :

    $\quad$
  4. D’après le tableau de variations précédent, le bénéfice est maximal quand l’entreprise produit et vend $16$ tonnes de produit. Le bénéfice maximal est alors égal à $512~000$ euros.
    $\quad$
  5. On a $B(8)=-128<0$ l’affirmation du directeur commercial est donc fausse.
    On a $B(10)=80$. Sur l’intervalle $[4;16]$ la fonction $B$ est strictement croissante. Donc sur $[10;80]$ on a bien $B(x)>0$.
    De plus sur $[16;20]$ on a $B(x)\pg 160$.
    L’affirmation du chef de production est donc vraie.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence