Bac – Spécialité mathématiques – Amérique du Nord – sujet 1 – 27 mars 2023

Amérique du Nord – 27 mars 2023

Spécialité maths – Sujet 1 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

Partie A

  1. On obtient l’arbre pondéré suivant :
    $\quad$

    $\quad$
  2. On veut calculer :
    $\begin{align*} P(D\cap R)&=P(D)P_D(R)\\
    &=0,03\times 0,35 \\
    &=0,010~5\end{align*}$
    La probabilité que le déchet soit dangereux et recyclable est égale à $0,010~5$.
    $\quad$
  3. On a :
    $\begin{align*} P\left(M\cap \conj{R}\right)&=P(M)P_M\left(\conj{R}\right) \\
    &=0,69\times 0,27 \\
    &=0,186~3\end{align*}$
    La probabilité que le déchet soit minéral non dangereux et non recyclable est égale à $0,186~3$.
    $\quad$
  4. $(M,N,D)$ forme un système complet d’événements fini.
    D’après la formule des probabilités totales on a :
    $\begin{align*} P(R)&=P(M\cap R)+P(N\cap R)+P(D\cap R) \\
    &=P(M)P_M(R)+P(N)P_N(R)+P(D)P_D(R) \\
    &=0,69\times 0,73+0,28\times 0,49+0,03\times 0,35 \\
    &=0,651~4\end{align*}$
    $\quad$
  5. On veut calculer :
    $\begin{align*} P_R(N)&=\dfrac{P(N\cap R)}{P(R)} \\
    &=\dfrac{P(N)P_N(R)}{P(R)} \\
    &=\dfrac{0,28\times 0,49}{0,651~4} \\
    &\approx 0,210~6\end{align*}$
    La probabilité que le déchet soit non minéral et non dangereux sachant qu’il est recyclable est environ égale à $0,210~6$.
    $\quad$

Partie B

  1. a. $X$ suit la loi binomiale de paramètres $n=20$ et $p=0,651~4$.
    $\quad$
    b. On veut calculer :
    $\begin{align*} P(X=14)&=\dbinom{20}{14}0,651~4^{14}\times (1-0,651~4)^6 \\
    &\approx 0,172~3\end{align*}$
    La probabilité que l’échantillon contienne exactement $14$ déchets recyclables est environ égale à $0,172~3$.
    $\quad$
  2. a. Pour tout entier naturel $n$ non nul on a donc
    $\begin{align*}p_n&=(1-0,651~4)^n \\
    &=0,348~6^n\end{align*}$
    $\quad$
    b. On veut déterminer le plus petit entier naturel non nul $n$ tel que :
    $\begin{align*} 1-0,348~6^n\pg 0,999~9 &\ssi -0,348~6^n \pg -0,000~1 \\
    &\ssi 0,348~6^n \pp 0,000~1 \\
    &\ssi n\ln(0,348~6) \pp\ln(0,000~1) \\
    &\ssi n\pg \dfrac{\ln(0,000~1)}{\ln(0,348~6)} \end{align*}$
    Or $\dfrac{\ln(0,000~1)}{\ln(0,348~6)}\approx 8,7$.
    L’entier naturel cherché est donc $9$.
    $\quad$

 

 

Ex 2

Exercice 2

Partie A – Étude d’une fonction auxiliaire

  1. a. $\lim\limits_{x\to -\infty}2x=-\infty$ et $\lim\limits_{X\to-\infty}\e^X=0$ donc $\lim\limits_{x\to-\infty}\e^{2x}=0$.
    De plus $\lim\limits_{x\to -\infty} -2x-3=+\infty$.
    Par conséquent $\lim\limits_{x\to -\infty} g(x)=+\infty$.
    $\quad$
    b. Pour tout réel $x$ on a $g(x)=\e^{2x}\left(3-2x\e^{-2x}-3\e^{-2x}\right)$
    $\lim\limits_{x\to +\infty} \e^{-2x}=0$ et, par croissances comparées, $\lim\limits_{x\to +\infty} x\e^{-2x}=0$.
    Par conséquent $\lim\limits_{x\to +\infty} 3-2x\e^{-2x}-3\e^{-2x}=3$.
    Or $\lim\limits_{x\to +\infty} \e^{2x}=+\infty$.
    Donc $\lim\limits_{x\to +\infty} g(x)=+\infty$.
    $\quad$
  2. a. Pour tout réel $x$ on a :
    $\begin{align*} g'(x)&=3\times 2\e^{2x}-2 \\
    &=6\e^{2x}-2\end{align*}$
    $\quad$
    b.
    $\begin{align*}g'(x)=0&\ssi 6\e^{2x}-2=0\\
    &\ssi \e^{2x}=\dfrac{1}{3} \\
    &\ssi 2x=\ln\left(\dfrac{1}{3}\right) \\
    &\ssi 2x=-\ln(3) \\
    &\ssi x=\dfrac{-\ln(3)}{2}\end{align*}$
    $\begin{align*}g'(x)>0&\ssi 6\e^{2x}-2>0\\
    &\ssi \e^{2x}>\dfrac{1}{3} \\
    &\ssi 2x>\ln\left(\dfrac{1}{3}\right) \\
    &\ssi 2x>-\ln(3) \\
    &\ssi x>\dfrac{-\ln(3)}{2}\end{align*}$
    Par conséquent :
    $\bullet~g'(x)<0$ sur $\left]-\infty;\dfrac{-\ln(3)}{2}\right[$
    $\bullet~g’\left(\dfrac{-\ln(3)}{2}\right)=0$
    $\bullet~g'(x)>0$ sur $\left]\dfrac{-\ln(3)}{2};+\infty\right[$
    $\quad$
    c. On obtient par conséquent le tableau de variations suivant :
    $\quad$

    $\quad$

    $\begin{align*} m&=g\left(\dfrac{-\ln(3)}{2}\right) \\
    &=\dfrac{3}{3}+\ln(3)-3 \\
    &=\ln(3)-2\end{align*}$
    $\quad$
  3. a. $g(0)=3-0-3=0$ donc $0$ est solution de l’équation $g(x)=0$.
    $\quad$.
    b. La fonction $g$ est continue (car dérivable) et strictement décroissante sur l’intervalle $\left]-\infty;-\dfrac{\ln(3)}{2}\right]$.
    $g\left(-\dfrac{\ln(3)}{2}\right)=\ln(3)-2<0$ et $\lim\limits_{x\to -\infty} g(x)=+\infty$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $g(x)=0$ admet une unique solution $\alpha$ sur $\left]-\infty;-\dfrac{\ln(3)}{2}\right]$.
    D’après la calculatrice $-1,5<\alpha<-1,4$.
    $\quad$
  4. D’après le tableau de variations de la fonction $g$ est la question A.3. on a :
    $\bullet ~g(x)>0$ sur $]-\infty;\alpha]$ ;
    $\bullet ~g(\alpha)=0$ ;
    $\bullet ~g(x)<0$ sur $]\alpha;0[$ ;
    $\bullet ~g(0)=0$ ;
    $\bullet ~g(x)>0$ sur $]0;+\infty[$.
    $\quad$

Partie B – Étude de la fonction $\boldsymbol{f}$

  1. Pour tout réel $x$ on a
    $\begin{align*} f'(x)&=3\e^{3x}-2\e^x-(2x+1)\e^x \\
    &=\e^x\left(3\e^{2x}-2-(2x+1)\right) \\
    &=\e^x\left(3\e^{2x}-2x-3\right) \\
    &=\e^xg(x)\end{align*}$
    $\quad$
  2. La fonction exponentielle est strictement positive. Ainsi $f'(x)$ et $g(x)$ ont le même signe.
    Par conséquent :
    $\bullet ~f'(x)>0$ sur $]-\infty;\alpha]$ ;
    $\bullet ~f'(\alpha)=0$ ;
    $\bullet ~f'(x)<0$ sur $]\alpha;0[$ ;
    $\bullet ~f'(0)=0$ ;
    $\bullet ~f'(x)>0$ sur $]0;+\infty[$.
    $\quad$
    La fonction $f$ est donc strictement croissante sur $]-\infty;\alpha]$ et sur $[0;+\infty[$ et est strictement décroissante sur $[\alpha;0]$.
    $\quad$
  3. La fonction $f’$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur cet intervalle.
    Pour tout réel $x$ on a $f'(x)=\e^xg(x)$. Par conséquent :
    $\begin{align*} f\dsec(x)&=\e^xg(x)+\e^xg'(x) \\
    &=\e^x\left(g(x)+g'(x)\right) \\
    &=\e^x\left(3\e^{2x}-2x-3+6\e^{2x}-2\right) \\
    &=\e^x\left(9\e^{2x}-2x-5\right)\end{align*}$
    En traçant la courbe sur la calculatrice, on remarque que cette expression est négative sur un intervalle inclus dans $]-3;0[$.
    En particulier $f\dsec(-1) \approx -0,66$.
    Ainsi $f$ n’est pas convexe sur $\R$.
    $\quad$

 

Ex 3

Exercice 3

  1. On a $\vect{AB}\begin{pmatrix}4\\4\\-2\end{pmatrix}$, $\vect{AC}\begin{pmatrix}4\\-2\\4\end{pmatrix}$ et $\vect{BC}\begin{pmatrix}0\\-6\\6\end{pmatrix}$.
    $\vect{AB}.\vect{AC}=16-8-8=0$.
    Le triangle $ABC$ est donc rectangle en $A$.
    De plus :
    $\begin{align*} AB^2&=4^2+4^2+(-2)^2 \\
    &=36\end{align*}$
    et
    $\begin{align*} AC^2&=4^2+(-2)^2+4^2 \\
    &=36\end{align*}$
    Ainsi $AB=AC$ et le triangle $ABC$ est également isocèle.
    Réponse a
    $\quad$
  2. On a :
    $4\times 3+6+3-21=21-21=0$ : les coordonnées du point $B$ vérifient l’équation $4x+y+z-21=0$.
    $4\times 3+0+9-21=21-21=0$ : les coordonnées du point $C$ vérifient l’équation $4x+y+z-21=0$.
    $4\times 8-3-8-21=32-32=0$ : les coordonnées du point $D$ vérifient l’équation $4x+y+z-21=0$.
    Réponse c
    $\quad$
  3. La première réponse ne convient pas car les coordonnées du point $H$ ne vérifient pas l’équation du plan $(ABC)$ fournie.
    Un vecteur normal au plan $(ABC)$ est $\vec{n}\begin{pmatrix}1\\-2\\-2\end{pmatrix}$.
    $\vect{DH}$ doit être colinéaires à ce vecteur.
    $3-2\times 7-2\times 2+15=0$. Le point $H’$ de coordonnées $(3,7,2)$ appartient donc au plan $(ABC)$.
    De plus $\vect{DH’}$ a pour coordonnées $\begin{pmatrix}-5\\10\\10\end{pmatrix}$.
    Donc $\vect{DH’}=-5\vec{n}$.
    Réponse b
    $\quad$
  4. Un vecteur directeur de $\Delta$ est $\vec{u}\begin{pmatrix}1\\-1\\3\end{pmatrix}$
    $\vec{u}$ et $\vect{BC}$ ne sont donc pas colinéaires.
    Une représentation paramétrique de la droite $(BC)$ est $$\begin{cases} x=3\\y=6-6k\\z=3+6k\end{cases} \qquad \forall k\in \R$$
    Déterminons si le système suivant possède une solution
    $\begin{align*}
    \begin{cases} x=3\\y=6-6k\\z=3+6k\\x=5+t\\y=3-t\\z=-1+3t \end{cases}&\ssi \begin{cases} x=5+t\\y=3-t\\z=-1+3t \\3=5+t\\6-6k=3-t\\3+6k=-1+3t \end{cases} \\
    &\ssi \begin{cases} x=5+t\\y=3-t\\z=-1+3t \\t=-2\\6-6k=3-t\\3+6k=-1+3t \end{cases} \\
    &\ssi \begin{cases} x=5+t\\y=3-t\\z=-1+3t \\t=-2\\-6k=-1\\6k=-10 \end{cases} \end{align*}$
    Les deux dernières équations ne sont pas compatibles.
    Réponse d
    $\quad$
  5. Les vecteurs normaux de ces deux plans ne sont pas colinéaires : les plans ne sont pas parallèles.
    $2\times (-1)-2+2\times 5-6=10-10=0$ : le point $A$ appartient au plan $\mathscr{P}$.
    $2\times 3-6+2\times 3-6=12-12=0$ : le point $B$ appartient au plan $\mathscr{P}$.
    La droite $(AB)$ appartient donc aux deux plans.
    Les deux plans sont sécants et leur intersection est la droite $(AB)$.
    Réponse b.
    $\quad$

 

 

Ex 4

Exercice 4

Partie A – Étude de la suite $\boldsymbol{u_n}$

  1. $\quad$
    $\begin{align*} u_1&=\dfrac{1}{2}\left(5+\dfrac{11}{5}\right) \\
    &=\dfrac{1}{2}\times \dfrac{36}{5} \\
    &=\dfrac{18}{5}\end{align*}$
    $\begin{align*} u_2&=\dfrac{1}{2}\left(\dfrac{18}{5}+\dfrac{55}{18}\right) \\
    &=\dfrac{1}{2}\times \dfrac{599}{90} \\
    &=\dfrac{599}{180}\end{align*}$
    $\quad$
  2. La fonction $f$ est dérivable sur $]0;+\infty[$ en tant que somme de fonctions dérivables sur cet intervalle.
    Pour tout réel $x>0$ on a :
    $\begin{align*} f'(x)&=\dfrac{1}{2}\left(1-\dfrac{11}{x^2}\right) \\
    &=\dfrac{x^2-11}{2x^2}\\
    &=\dfrac{\left(x-\sqrt{11}\right)\left(x+\sqrt{11}\right)}{2x^2}\end{align*}$
    Pour tout réel $x\pg \sqrt{11}$ on a $x-\sqrt{11}\pg 0$, $x+\sqrt{11}\pg 0$ et $2x^2\pg 0$.
    Ainsi, $f'(x)\pg 0$ sur $\left[\sqrt{11};+\infty\right[$.
    La fonction $f$ est donc bien croissante sur l’intervalle $\left[\sqrt{11};+\infty\right[$.
    $\quad$
  3. Pour tout $n\in \N$ on pose $P(n):~u_n\pg u_{n+1}\pg \sqrt{11}$
    Initialisation : $u_0=5$, $u_1=\dfrac{18}{5}=3,6$ et $\sqrt{11}\approx 3,32$.
    Par conséquent $u_0\pg u_1\pg \sqrt{11}$ et $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    Ainsi $u_n\pg u_{n+1} \pg \sqrt{11}$.
    La fonction $f$ est croissante sur l’intervalle $\left[\sqrt{11};+\infty\right[$.
    Par conséquent $f\left(u_n\right)\pg f\left(u_{n+1}\right) \pg f\left(\sqrt{11}\right)$
    Soit $u_{n+1}\pg u_{n+2} \pg \sqrt{11}$ et $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Par conséquent, pour tout $n\in \N$, on a $u_n\pg u_{n+1}\pg \sqrt{11}$.
    $\quad$
  4. La suite $\left(u_n\right)$ est décroissante et minorée par $\sqrt{11}$; elle converge donc.
    $\quad$
  5. La fonction $f$ est continue (car dérivable) sur $\left[\sqrt{11};+\infty\right[$.
    De plus, pour tout $n\in \N$, on a $u_{n+1}=f\left(u_n\right)$.
    Ainsi $\alpha$ est solution de l’équation :
    $\begin{align*} f(x)=x&\ssi x+\dfrac{11}{x}=2x \\
    &\ssi \dfrac{11}{x}=x \\
    &\ssi x^2=11 \\
    &\ssi x=\sqrt{11} \text{ ou } x=-\sqrt{11}\end{align*}$.
    Or $\alpha \pg \sqrt{11}$.
    Par conséquent $\alpha=\sqrt{11}$.
    $\quad$

Partie B – Application géométrique

  1. a. On a $L_0\times \ell_0=11 \ssi 5\ell_0=11 \ssi \ell_0=2,2$.
    $\quad$
    b. Pour tout entier naturel $n$ on a $L_n\ell_n=11$ donc $\ell_n=\dfrac{11}{L_n}$.
    $\quad$
  2. On a $L_0=u_0$. De plus, pour tout $n\in \N$ on a :
    $\begin{align*} L_{n+1}&=\dfrac{1}{2}\left(L_n+\ell_n\right) \\
    &=\dfrac{1}{2}\left(L_n+\dfrac{11}{L_n}\right)\end{align*}$
    Par conséquent $ \left(L_n\right)$ correspond à la suite $\left(u_n\right)$.
    $\quad$
  3. D’après la partie A, $L_n\pg \sqrt{11}$.
    Par conséquent $\dfrac{1}{L_n} \pp \dfrac{1}{\sqrt{11}} $
    Ainsi $\dfrac{11}{L_n}\pp \sqrt{11}$
    D’où $\ell_n \pp \sqrt{11}$.
    $\quad$
  4. Cela signifie que sur le long terme, le rectangle $R_n$ sera un carré de côté $\sqrt{11}$.
    $\quad$
  5. a. On obtient les valeurs approchée de $\ell_3$ et $L_3$.
    L’appel $\texttt{heron(3)}$ renvoie donc $\texttt{(3.316606, 3.316643)}$.
    $\quad$
    b. Cela signifie qu’un encadrement de $\sqrt{11}$ est $3,316~606 \pp \sqrt{11}\pp  3,316~643$.
    $\quad$

 

 

Énoncé

Télécharger (PDF, 249KB)

Si l’énoncé ne s’affiche pas directement rafraîchissez l’affichage.