Bac – Spécialité mathématiques – Amérique du Nord – sujet 2 – 19 mai 2022

Amérique du nord – 19 mai 2022

Spécialité maths – Sujet 2 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. On obtient l’arbre pondéré suivant :
    $\quad$
    $\quad$
  2. a. $\left(A_1,B_1\right)$ forme un système complet d’événements fini.
    D’après la formule des probabilités totales :
    $\begin{align*} a_2&=P\left(A_2\right) \\
    &=P\left(A_1\cap A_2\right)+P\left(B_1\cap A_2\right) \\
    &=P\left(A_1\right)\times P_{A_1}\left(A_2\right)+P\left(B_1\right)\times P_{B_1}\left(A_2\right) \\
    &=0,5\times 0,84+0,5\times 0,24 \\
    &=0,54\end{align*}$
    $\quad$
    b. On veut calculer :
    $\begin{align*} P_{A_2}\left(B_1\right)&=\dfrac{P\left(A_2\cap B_1\right)}{P\left(A_2\right)} \\
    &=\dfrac{0,5\times 0,24}{0,54}\\
    &=\dfrac{2}{9}\end{align*}$
    La probabilité que le vélo se trouve au point B le premier matin sachant qu’il se trouve au point A le deuxième matin est égale à $\dfrac{2}{9}$ soit environ égale à $0,222$.
    $\quad$
  3. a. On obtient l’arbre suivant :$\quad$
    b. Soit $n\in \N^*$. $\left(A_n,B_n\right)$ forme un système complet d’événements fini.
    D’après la formule des probabilités totales on a
    $\begin{align*} a_{n+1}&=P\left(A_{n+1}\right) \\
    &=P\left(A_n\cap A_{n+1}\right)+P\left(B_n\cap A_{n+1}\right) \\
    &=P\left(A_n\right)\times P_{A_n}\left(A_{n+1}\right)+P\left(B_n\right)\times P_{B_n}\left(A_{n+1}\right) \\
    &=0,84a_n+0,24\left(1-a_n\right) \\
    &=0,6a_n+0,24\end{align*}$
    $\quad$
  4. Pour tout entier naturel $n$ non nul on pose $R(n):~a_n=0,6-0,1\times 0,6^{n-1}$.
    Initialisation : $a_1=0,5$ et $0,6-0,1^1=0,5$ donc $R(1)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $R(n)$ vraie.
    $\begin{align*} a_{n+1}&=0,6a_n+0,24 \\
    &=0,6\left(0,6-0,1\times 0,6^{n-1}\right)+0,24\\
    &=0,36-0,1\times 0,6^n+0,24 \\
    &=0,6-0,1\times 0,6^n\end{align*}$
    Donc $R(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $1$ et est héréditaire.
    Par conséquent, pour tout entier naturel $n$ on a $a_n=0,6-0,1\times 0,6^{n-1}$.
    $\quad$
  5. $-1<0,6<1$ donc $\lim\limits_{n\to +\infty} 0,6^n=0$ et $\lim\limits_{n\to +\infty} a_n=0,6$.
    Sur le long terme, la probabilité que le vélo se trouve au point $A$ est égale à $0,6$.
    $\quad$
  6. $\quad$
    $\begin{align*} a_n\pg 0,599&\ssi 0,6-0,1\times 0,6^{n-1}\pg 0,599 \\
    &\ssi -0,1\times 0,6^{n-1} \pg -0,001 \\
    &\ssi 0,6^{n-1} \pp 0,01 \\
    &\ssi (n-1)\ln(0,6)\pp \ln(0,01) \\
    &\ssi n-1\pg \dfrac{\ln(0,01)}{\ln(0,6)} \quad \text{car } \ln(0,6)<0\\
    &\ssi n\pg \dfrac{\ln(0,01)}{\ln(0,6)}+1\end{align*}$
    Or $\dfrac{\ln(0,01)}{\ln(0,6)}+1\approx 10,02$
    Le plus petit entier naturel $n$ tel que $a_n\pg 0,599$ est donc $11$.
    La probabilité que le vélo se trouve au point $A$ est supérieure à $0,599$ à partir du $11$-ième jour.
    $\quad$

 

Ex 2

Exercice 2

Partie A

  1. La fonction $p$ est dérivable sur $[-3;4]$ en tant que fonction polynôme.
    Pour tout réel $x\in [-3;4]$ on a $p'(x)=3x^2-6x+5$.
    Il s’agit d’un polynôme du second degré dont le discriminant est $\Delta=-24<0$
    Ainsi $p'(x)$ est du signe du coefficient principal $a=3>0$.
    Par conséquent $p$ est strictement croissante sur $[-3;4]$.
    $\quad$
  2. La fonction $p$ est continue (car dérivable) et strictement croissante sur $[-3;4]$.
    $p(-3)=-68<0$ et $p(4)=37>0$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires), l’équation $p(x)=0$ admet une unique solution $\alpha$ sur $[-3;4]$.
    $\quad$
  3. D’après la calculatrice $\alpha\approx -0,2$.
    $\quad$
  4. La fonction $p$ est strictement croissante sur $[-3;4]$ et s’annule en $\alpha$. On obtient alors le tableau de signes suivant :
    $\quad$

Partie B

  1. a. La fonction $f$ est dérivable sur $[-3;4]$ en tant que quotient de fonctions dérivables dont le dénominateur ne s’annule pas.
    Pour tout réel $x\in [-3;4]$ on a :
    $\begin{align*} f'(x)&=\dfrac{\e^x\left(1+x^2\right)-2x\e^x}{\left(1+x^2\right)^2} \\
    &=\dfrac{\left(x^2-2x+1\right)\e^x}{\left(1+x^2\right)^2} \\
    &=\dfrac{(x-1)^2\e^x}{\left(1+x^2\right)^2} \end{align*}$
    $\quad$
    b. On a fonc $f'(1)=0$.
    La courbe $\mathscr{C}_f$ admet une tangente horizontale au point d’abscisse $1$.
    $\quad$
  2. a. Il semblerait que la fonction change de convexité (et donc $\mathscr{C}_f$ possède un point d’inflexion) environ en $0$ et en $1$.
    Le toboggan semble dont assurer de bonnes sensations.
    $\quad$
    b. La fonction exponentielle est strictement positive sur $\R$ et pour tout réel $x\in [-3;4]$ on a $\left(1+x^2\right)^3>0$.
    Le signe de $f\dsec(x)$ ne dépend donc que de celui de $p(x)(x-1)$.
    $x-1=0 \ssi x=1$ et $x-1>0\ssi x>1$.
    D’après le tableau de signes obtenu à la question A.4. on obtient le tableau de signes de $f\dsec(x)$.
    La fonction $f$ est donc convexe sur $[-3;\alpha]$ et $[1;4]$ et concave sur $[\alpha;1]$. $f\dsec(x)$ s’annule en $\alpha$ et $1$.
    Donc $\mathscr{C}_f$ possède deux points d’inflexion et le toboggan assurera de bonnes sensations.
    $\quad$

 

Ex 3

Exercice 3

  1. a. $\vect{AR}\begin{pmatrix}0\\3\\2\end{pmatrix}$ et $\vect{AT}\begin{pmatrix}-3\\0\\2\end{pmatrix}$
    Par conséquent
    $\begin{align*} AR&=\sqrt{0^2+3^2+2^2} \\
    &=\sqrt{13}\end{align*}$
    $\begin{align*} AT&=\sqrt{(-3)^2+0^2+2^2} \\
    &=\sqrt{13}\end{align*}$
    Ainsi $AR=AT$. Le triangle $ART$ est isocèle en $A$.
    b. $\quad$
    $\begin{align*} \vect{AR}.\vect{AT}&=0\times -(-3)+3\times 0+2\times 2\\
    &=4\end{align*}$
    $\quad$
    c. On a également $\vect{AR}.\vect{AT}=AR\times AT\times \cos \widehat{RAT}$.
    Par conséquent
    $\begin{align*} \cos \widehat{RAT}&=\dfrac{\vect{AR}.\vect{AT}}{AR\times AT} \\
    &=\dfrac{4}{13} \end{align*}$
    Donc $\widehat{RAT}\approx 72,1$°
    $\quad$
  2. a. D’une part
    $\begin{align*} \vec{n}.\vect{AR}&=2\times 0+(-2)\times 3+3\times 2\\
    &=0\end{align*}$
    D’autre part
    $\begin{align*} \vec{n}.\vect{AT}&=2\times (-3)+(-2)\times 0+3\times 2\\
    &=0\end{align*}$
    Ainsi $\vec{n}$ est orthogonal à deux vecteurs non colinéaires (l’angle $\widehat{RAT}$ n’est ni plat ni nul) du plan $(ART)$.
    $\vec{n}$ est donc un vecteur normal au plan $(ART)$.
    $\quad$
    b. Une équation du plan $(ART)$ est par conséquent de la forme $2x-2y+3z+d=0$.
    Or $A(6;0;2)$ appartient à ce plan.
    Donc $12-0+6+d=0 \ssi d=-18$
    Une équation cartésienne du plan $(ART)$ est $2x-2y+3z-18=0$.
    $\quad$
  3. a. $\vec{n}\begin{pmatrix}2\\-2\\3\end{pmatrix}$ est un vecteur directeur de la droite $\Delta$ et le point $S\left(3;\dfrac{5}{2};0\right)$ appartient à cette droite.
    Une représentation paramétrique de la droite $\Delta$ est bien $\begin{cases} x=3+2k\\y=\dfrac{5}{2}-2k\\z=3k\end{cases} \quad k\in \R$.
    $\quad$
    b. Prenons $k=1$ dans la représentation paramétrique précédente. Le point de coordonnées $\left(5;\dfrac{1}{2};3\right)$ appartient à la droite $\Delta$.
    $2\times 5-2\times \dfrac{1}{2}+3\times 3-18=10-1+9-18=0$. Le point de coordonnées $\left(5;\dfrac{1}{2};3\right)$ appartient au plan $(ART)$.
    Ainsi $L$ a pour coordonnées $\left(5;\dfrac{1}{2};3\right)$.
    $\quad$
  4. a. On a $D(0,8,0)$ et $K(0;4;4)$ donc $\vect{DK}\begin{pmatrix}0\\-4\\4\end{pmatrix}$ et $\vect{DN}\begin{pmatrix} 0\\-4t\\4t\end{pmatrix}$
    Par conséquent $\vect{DN}=t\vect{DK}$.
    Les points $D$, $N$ et $K$ sont alignés.
    $T\in[0;1]$ donc $N$ appartient au segment $[DK]$.
    $\quad$
    b. On a $\vect{SL}\begin{pmatrix}2\\-2\\3\end{pmatrix}$ et $\vect{SN}\begin{pmatrix} -3\\\dfrac{11}{2}-4t\\4t\end{pmatrix}$.$\begin{align*} &(SL) \text{ et }(SN)\text{ sont perpendiculaires}\\
    &\ssi\vect{SL}.\vect{SN}=0 \\
    &\ssi 2\times (-3)+(-2)\times  \left(\dfrac{11}{2}-4t\right)+3\times 4t=0 \\
    &\ssi -6-11+8t+12t=0 \\
    &\ssi 20t=17 \\
    &\ssi t=0,85\end{align*}$
    Le point $N$ doit donc avoir pour coordonnées $(0;4,6;3,4)$ pour que les deux rayons lasers soient perpendiculaires.
    $\quad$

 

Ex 4

Exercice 4

  1. $\quad$
    $\begin{align*}a&=\ln(9)+\ln\left(\dfrac{\sqrt{3}}{3}\right)+\ln\left(\dfrac{1}{9}\right) \\
    &=\ln(9)+\ln\left(\sqrt{3}\right)-\ln(3)-\ln(9)\\
    &=\dfrac{1}{2}\ln(3)-\ln(3) \\
    &=-\dfrac{1}{2}\ln(3)\end{align*}$
    Réponse d
    $\quad$
  2. $x-10>0\ssi x>10$ : l’équation est définie sur $]10;+\infty[$
    Sur $]10;+\infty[$
    $\begin{align*} &\ln(x)+\ln(x-10)=\ln(3)+\ln(7) \\
    &\ssi \ln\left(x(x-10)\right)=\ln(21) \\
    &\ssi x(x-10)=21 \\
    &\ssi x^2-10x-21=0\end{align*}$
    Le discriminant de $x^2-10x-21$ est $\Delta=184>0$.
    Les racines de ce polynômes sont $x_1=\dfrac{10-\sqrt{184}}{2}<0$ et $x_2=\dfrac{10+\sqrt{184}}{2}>10$
    Donc l’unique solution de $(E)$ est $\dfrac{10+\sqrt{184}}{2}$.
    Réponse c
    $\quad$
  3. La fonction $f$ est dérivable sur $]0;+\infty[$ en tant que somme et produit de fonctions dérivables.
    Pour tout réel $x\in ]0;+\infty[$,
    $\begin{align*} f'(x)&=2x\left(-1+\ln(x)\right)+x^2\times \dfrac{1}{x} \\
    &=-2x+2x\ln(x)+x \\
    &=x\left(2\ln(x)-1\right)\end{align*}$
    $\ln\left(\sqrt{e}\right)=\dfrac{1}{2}$
    Par conséquent $f’\left(\sqrt{e}\right)=0$.
    Une équation de la tangente au point d’abscisse $\sqrt{e}$ est donc $y=f\left(\sqrt{e}\right)$ soit $y=-\dfrac{1}{2}\e$.
    Réponse d
    $\quad$
  4. On répète $5$ fois de façon indépendante la même expérience de Bernoulli. On appelle $X$ la variable aléatoire qui compte le nombre de jetons jaunes tirés.
    $X$ suit donc la loi binomiale de paramètres $n=5$ et $p=\dfrac{2}{5}$
    Ainsi
    $\begin{align*} P(X=2)&=\dbinom{5}{2}\left(\dfrac{2}{5}\right)^2\left(\dfrac{3}{5}\right)^3\\
    &\approx 0,346\end{align*}$
    Réponse b
    $\quad$
  5. On reprend la variable aléatoire $X$ définie à la question précédente.
    $\begin{align*} P(X\pg 1)&=1-P(X=0) \\
    &=1-\left(\dfrac{3}{5}\right)^5\\
    &\approx 0,922\end{align*}$
    Réponse d
    $\quad$
  6. On reprend la variable aléatoire $X$ définie à la question 4..
    Son espérance mathématiques est :
    $\begin{align*} E(X)&=np\\
    &=5\times \dfrac{2}{5} \\
    &=2\end{align*}$
    Réponse c
    $\quad$

Énoncé

Exercice 1     7 points

Thème : probabilités, suites

Dans une région touristique, une société propose un service de location de vélos pour la journée.
La société dispose de deux points de location distinctes, le point A et le point B. Les vélos peuvent être empruntés et restitués indifféremment dans l’un où l’autre des deux points de location.
On admettra que le nombre total de vélos est constant et que tous les matins, à l’ouverture du service, chaque vélo se trouve au point A ou au point B.

D’après une étude statistique :

  • Si un vélo se trouve au point A un matin, la probabilité qu’il se trouve au point A le matin suivant est égale à $0,84$;
  • Si un vélo se trouve au point B un matin la probabilité qu’il se trouve au point B le matin suivant est égale à $0,76$.

À l’ouverture du service le premier matin, la société a disposé la moitié de ses vélos au point A, l’autre moitié au point B.

On considère un vélo de la société pris au hasard.

Pour tout entier naturel non nul n, on définit les évènements suivants :

  • $A_n$ : « le vélo se trouve au point A le $n$-ième matin »
  • $B_n$ : « le vélo se trouve au point B le $n$-ième matin ».

Pour tout entier naturel non nul $n$, on note $a_n$ la probabilité de l’évènement $A_n$ et $b_n$ la probabilité de l’évènement $B_n$. Ainsi $a_1 = 0,5$ et $b_1 = 0,5$.

  1. Recopier et compléter l’arbre pondéré ci-dessous qui modélise la situation pour les deux premiers matins :$\quad$
  2. a. Calculer $a_2$.
    $\quad$
    b. Le vélo se trouve au point A le deuxième matin. Calculer la probabilité qu’il se soit trouvé au point B le premier matin. La probabilité sera arrondie au millième.
    $\quad$
  3. a. Recopier et compléter l’arbre pondéré ci-dessous qui modélise la situation pour les $n$-ième et $n +1$-ième matins.
    $\quad$
    b. Justifier que pour tout entier naturel non nul $n$, $a_{n+1} = 0,6a_n +0,24$.
    $\quad$
  4. Montrer par récurrence que, pour tout entier naturel non nul $n$, $a_n = 0,6−0,1×0,6^{n−1}$.
    $\quad$
  5. Déterminer la limite de la suite $\left(a_n\right)$ et interpréter cette limite dans le contexte de l’exercice.
    $\quad$
  6. Déterminer le plus petit entier naturel $n$ tel que $a_n > 0,599$ et interpréter le résultat obtenu dans le contexte de l’exercice.
    $\quad$

$\quad$

Exercice 2     7 points

Thème : fonctions, fonction exponentielle

Partie A

Soit p la fonction définie sur l’intervalle $[-3 ; 4]$ par : $$p(x)=x^3-3x^2+5x+1$$

  1. Déterminer les variations de la fonction $p$ sur l’intervalle $[-3 ; 4]$.
    $\quad$
  2. Justifier que l’équation $p(x) = 0$ admet dans l’intervalle $[-3 ; 4]$ une unique solution qui sera notée $\alpha$.
    $\quad$
  3. Déterminer une valeur approchée du réel $\alpha$ au dixième près.
    $\quad$
  4. Donner le tableau de signes de la fonction $p$ sur l’intervalle $[-3 ; 4]$.
    $\quad$

Partie B

Soit $f$ la fonction définie sur l’intervalle $[-3 ; 4]$ par :$$f(x)=\dfrac{\e^x}{1+x^2}$$
On note $\mathscr{C}_f$ sa courbe représentative dans un repère orthogonal.

  1. a. Déterminer la dérivée de la fonction $f$ sur l’intervalle $[-3 ; 4]$.
    $\quad$
    b. Justifier que la courbe $\mathscr{C}_f$ admet une tangente horizontale au point d’abscisse $1$.
    $\quad$
  2. Les concepteurs d’un toboggan utilisent la courbe $\mathscr{C}_f$ comme profil d’un toboggan. Ils estiment que le toboggan assure de bonnes sensations si le profil possède au moins deux points d’inflexion.
    $\quad$
    a. D’après le graphique ci-dessus, le toboggan semble-t-il assurer de bonnes sensations ?
    Argumenter.
    b. On admet que la fonction $f\dsec$, dérivée seconde de la fonction $f$ , a pour expression pour tout réel $x$ de l’intervalle $[-3 ; 4]$ :
    $$f\dsec(x)=\dfrac{p(x)(x-1)\e^x}{\left(1+x^2\right)^3}$$
    où $p$ est la fonction définie dans la partie A.
    En utilisant l’expression précédente de $f\dsec$, répondre à la question : « le toboggan assure-t-il de bonnes sensations ? ». Justifier.
    $\quad$

$\quad$

Exercice 3     7 points

Thème : géométrie dans l’espace

Une exposition d’art contemporain a lieu dans une salle en forme de pavé droit de largeur $6$ m, de longueur $8$ m et de hauteur $4$ m.
Elle est représentée par le parallélépipède rectangle $OBCDEFGH$ où $OB = 6$ m, $OD = 8$ m et $OE = 4$ m.
On utilise le repère orthonormé $\Oijk$ tel que $\vec{i}=\dfrac{1}{6}\vect{OB}$, $\vec{j}=\dfrac{1}{8}\vect{OD}$ et $\vec{k}=\dfrac{1}{4}\vect{OE}$.

 

Dans ce repère on a, en particulier $C(6; 8; 0)$, $F(6; 0; 4)$ et $G(6; 8; 4)$.
Une des œuvres exposées est un triangle de verre représenté par le triangle $ART$ qui a pour sommets $A(6; 0; 2)$, $R(6; 3; 4)$ et $T(3; 0; 4)$, Enfin, $S$ est le point de coordonnées $\left(3;\dfrac{5}{2};0\right)$.

  1. a. Vérifier que le triangle $ART$ est isocèle en $A$.
    $\quad$
    b. Calculer le produit scalaire $\vect{AR}.\vect{AT}$.
    $\quad$
    c. En déduire une valeur approchée à $0,1$ degré près de l’angle $\widehat{RAT}$.
    $\quad$
  2. a. Justifier que le vecteur $\vec{n}\begin{pmatrix}2\\-2\\3\end{pmatrix}$ est un vecteur normal au plan $(ART)$.
    $\quad$
    b. En déduire une équation cartésienne du plan $(ART)$.
    $\quad$
  3. Un rayon laser dirigé vers le triangle $ART$ est émis du plancher à partir du point $S$. On admet que ce rayon est orthogonal au plan $(ART)$.
    a. Soit $\Delta$ la droite orthogonale au plan $(ART)$ et passant par le point $S$.
    Justifier que le système ci-dessous est une représentation paramétrique de la droite $\Delta$ : $$\begin{cases} x=3+2k\\[3pt]y=\dfrac{5}{2}-2k\\[3pt]z=3k\end{cases} \quad, \text{avec } k\in \R$$
    $\quad$
    b. Soit $L$ le point d’intersection de la droite $\Delta$, avec le plan $(ART)$.
    Démontrer que $L$ a pour coordonnées $\left(5;\dfrac{1}{2};3\right)$.
    $\quad$
  4. L’artiste installe un rail représenté par le segment $[DK]$ ou $K$ est le milieu du segment $[EH]$.
    Sur ce rail, il positionne une source lumineuse laser en un point $N$ du segment $[DK]$ et il oriente ce second rayon laser vers le point $S$.
    $\quad$
    $\quad$
    a. Montrer que, pour tout réel $t$ de l’intervalle $[0; 1]$, le point $N$ de coordonnées $(0 ; 8−4t ; 4t)$ est un point du segment $[DK]$.
    $\quad$
    b. Calculer les coordonnées exactes du point $N$ tel que les deux rayons laser représentés par les segments $[SL]$ et $[SN]$ soient perpendiculaires.
    $\quad$

$\quad$

Exercice 4     7 points

Thème : : fonction logarithme népérien, probabilités

Cet exercice est un questionnaire à choix multiples (QCM) qui comprend six questions. Les six questions sont indépendantes. Pour chacune des questions, une seule des quatre réponses est exacte. Le candidat indiquera sur sa copie le numéro de la question suivi de la lettre correspondant à la réponse exacte.
Aucune justification n’est demandée.
Une réponse fausse, une réponse multiple ou une absence de réponse ne rapporte ni n’enlève aucun point.

Question 1

Le réel $a$ est définie par $a = \ln(9)+\ln\left(\dfrac{\sqrt{3}}{3}\right)+\ln\left(\dfrac{1}{9}\right)$ est égal à :
a. $1-\dfrac{1}{2}\ln(3)$
b. $\dfrac{1}{2}\ln(3)$
c. $3\ln(3)-\dfrac{1}{2}$
d. $-\dfrac{1}{2}\ln(3)$
$\quad$

Question 2

On note $(E)$ l’équation suivante $\ln(x) +\ln(x −10) = ln (3)+ln (7)$ d’inconnue le réel $x$.
a. $3$ est solution de $(E)$.
b. $5-\sqrt{46}$ est solution de $(E)$.
c. L’équation $(E)$ admet une unique solution réelle.
d. L’équation $(E)$ admet deux solutions réelles.
$\quad$

Question 3

La fonction $f$ est définie sur l’intervalle $]0 ; +\infty[$ par l’expression $f(x)=x^2\left(-1+\ln(x)\right)$.
On note $\mathscr{C}_f$ sa courbe représentative dans le plan muni d’un repère.
a. Pour tout réel $x$ de l’intervalle $]0 ; +\infty[$, $f'(x)=2x+\dfrac{1}{x}$.
b. La fonction $f$ est croissante sur l’intervalle $]0 ; +\infty[$.
c. $f’\left(\sqrt{\e}\right)$ est différent de $0$.
d. La droite d’équation $y=-\dfrac{1}{2}\e$ est tangente à la courbe $\mathscr{C}_f$ au point d’abscisse $\sqrt{\e}$.
$\quad$

Question 4

Un sac contient $20$ jetons jaunes et $30$ jetons bleus. On tire successivement et avec remise $5$ jetons du sac.
La probabilité de tirer exactement $2$ jetons jaunes, arrondie au millième, est :
a. $0,683$
b. $0,346$
c. $0,230$
d. $0,165$
$\quad$

Question 5

Un sac contient $20$ jetons jaunes et $30$ jetons bleus. On tire successivement et avec remise $5$ jetons du sac.
La probabilité de tirer au moins un jeton jaune, arrondie au millième, est :
a. $0,078$
b. $0,259$
c. $0,337$
d. $0,922$
$\quad$

Question 6

Un sac contient $20$ jetons jaunes et $30$ jetons bleus.
On réalise l’expérience aléatoire suivante : on tire successivement et avec remise cinq jetons du sac.
On note le nombre de jetons jaunes obtenus après ces cinq tirages.
Si on répète cette expérience aléatoire un très grand nombre de fois alors, en moyenne, le nombre de jetons jaunes est égal à:
a. $0,4$
b. $1,2$
c. $2$
d. $2,5$
$\quad$

$\quad$