Bac – Spécialité mathématiques – Amérique du Nord – sujet 2 – 28 mars 2023

Amérique du Nord – 28 mars 2023

Spécialité maths – Sujet 2 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

Partie A

  1. La fonction $f’$ semble être positive sur $]-\infty;0,3]$ et sur $[2,5;+\infty[$ et négative sur $[0,3;2,5]$.
    Par conséquent $f$ semble croissante sur $]-\infty;0,3]$ et sur $[2,5;+\infty[$ et décroissante sur $[0,3;2,5]$.
    $\quad$
  2. La fonction $f’$ semble strictement croissante sur $]-\infty;-1]$ et $[2;+\infty[$ et strictement décroissante sur $[-1;2]$.
    La fonction $f$ semble être convexe sur $]-\infty;-1]$ et sur $[2;+\infty[$.
    $\quad$

Partie B

  1. a. D’après la limite des termes de plus haut degré, $\lim\limits_{x\to +\infty} x^2-5x+6=\lim\limits_{x\to +\infty} x^2=+\infty$.
    De plus $\lim\limits_{x\to +\infty} \e^x=+\infty$.
    Par conséquent $\lim\limits_{x\to +\infty} f(x)=+\infty$.
    $\quad$
    b. Pour tout réel $x$ on a $f(x)=x^2\e^x-5x\e^x+6\e^x$.
    $\lim\limits_{x\to -\infty} \e^x=0$ et, par croissances comparées, $\lim\limits_{x\to -\infty} x^2\e^x=0$ et $\lim\limits_{x\to -\infty} x^2\e^x=0$.
    Ainsi $\lim\limits_{x\to -\infty} f(x)=0$.
    $\quad$
  2. La fonction $f$ est dérivable sur $\R$ en tant que somme et produit de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a :
    $\begin{align*} f'(x)&=(2x-5)\e^x+\left(x^2-5x+6\right)\e^x \\
    &=\left(2x-5+x^2-5x+6\right)\e^x \\
    &=\left(x^2-3x+1\right)\e^x\end{align*}$.
    $\quad$
  3. La fonction exponentielle est strictement positive sur $\R$.
    Par conséquent $f'(x)$ est du même signe que $x^2-3x+1$.
    Il s’agit d’un polynôme du second degré dont le discriminant est $\Delta=5>0$.
    Ses racines sont donc $\dfrac{3-\sqrt{5}}{2}$ et $\dfrac{3+\sqrt{5}}{2}$.
    $\quad$
    De plus son coefficient principal est $1>0$.
    Par conséquent :
    $\bullet~f'(x)<0$ sur $\left]\dfrac{3-\sqrt{5}}{2};\dfrac{3+\sqrt{5}}{2}\right[$ ;
    $\bullet~f'(x)=0$ si $x\in \acco{\dfrac{3-\sqrt{5}}{2};\dfrac{3+\sqrt{5}}{2}}$ ;
    $\bullet~f'(x)>0$ sur $\left]-\infty;\dfrac{3-\sqrt{5}}{2}\right[$ et $\left]\dfrac{3+\sqrt{5}}{2};+\infty\right[$.
    La fonction $f$ est donc strictement croissante sur $\left]-\infty;\dfrac{3-\sqrt{5}}{2}\right[$ et $\left]\dfrac{3+\sqrt{5}}{2};+\infty\right[$ et strictement décroissante sur $\left]\dfrac{3-\sqrt{5}}{2};\dfrac{3+\sqrt{5}}{2}\right[$ .
    $\quad$
  4. Une équation de $(\mathscr{T})$ est $y=f'(0)x+f(0)$.
    Or $f(0)=6$ et $f'(0)=1$.
    Une équation de $(\mathscr{T})$ est donc $y=x+6$.
    $\quad$
  5. a. La fonction exponentielle est strictement positive sur $\R$.
    Par conséquent $f\dsec(x)$ est du signe de $(x+1)(x-2)$.
    $x+1=0\ssi x=-1$ et $x+1>0\ssi x>-1$
    $x-2=0\ssi x=2$ et $x-2>0 \ssi x>2$.
    Par conséquent $f\dsec(x)<0 \ssi x\in ]-1;2[$.
    La fonction $f$ est concave sur $[-1;2]$ et convexe sur $]-\infty;-1]$ et sur $[2;+\infty[$.
    $\quad$
    b. La fonction $f$ est concave sur $[-1;2]$. Sa courbe représentative est donc située sous ses tangentes sur cet intervalle.
    Or $0$ appartient à $[-1;2]$.
    Par conséquent $f(x)\pp x+6$.
    $\quad$

 

Ex 2

Exercice 2

  1. Pour tout entier naturel $n$ on a donc $a_{n+1}=(1-0,15)a_n+0,1b_n$ soit $a_{n+1}=0,85a_n+0,1b_n$ et $b_{n+1}=0,15a_n+(1-0,1)b_n$ soit $b_{n+1}=0,15a_n+0,9b_n$.
    Par conséquent
    $\begin{align*} a_1&=0,85\times 1~700+0,1\times 1~300\\
    &=1~575\end{align*}$
    $\begin{align*} b_1&=0,15\times 1~700+0,9\times 1~300\\
    &=1~425\end{align*}$
    En 2024, le club A comptera $1~575$ membres et le club B $1~425$.
    $\quad$
  2. Durant l’étude aucun sportif ne quitte le groupe.
    Par conséquent, pour tout $n\in \N$, on a $a_n+b_n=3~000$.
    $\quad$
  3. Pour tout $n\in \N$ on a $a_{n+1}=0,85a_n+0,1b_n$ et $a_n+b_n=3~000$.
    Par conséquent :
    $\begin{align*} a_{n+1}&=0,85a_n+0,1\left(3~000-a_n\right) \\
    &=0,85a_n+300-0,1a_n \\
    &=0,75a_n+300\end{align*}$
    $\quad$
  4. a. Pour tout $n\in \N$ on pose $P(n):~1~200\pp a_{n+1}\pp a_n\pp 1~700$.
    Initialisation : $a_0=1~700$ et $a_1=1~575$. Donc $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose que $P(n)$ est vraie.
    $1~200\pp a_{n+1}\pp a_n\pp 1~700$
    donc
    $900\pp 0,75a_{n+1}\pp 0,75a_n\pp 1~275$
    Par conséquent $1~200 \pp 0,75a_{n+1}+300\pp 0,75a_n+300\pp 1~575$.
    Donc $1~200\pp a_{n+2} \pp a_{n+1} \pp 1~575\pp 1~700$.
    Ainsi $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Pour tout $n\in \N$, $1~200\pp a_{n+1}\pp a_n\pp 1~700$.
    $\quad$
    b. La suite $\left(a_n\right)$ est décroissante et minorée par $1~200$ ; elle converge donc.
    $\quad$
  5. a. Soit $n\in \N$.
    $\begin{align*} v_{n+1}&=a_{n+1}-1~200 \\
    &=0,75a_n+300-1~200\\
    &=0,75a_n-900 \\
    &=0,75\left(a_n-1~200\right) \\
    &=0,75v_n\end{align*}$
    La suite $\left(v_n\right)$ est donc géométrique de raison $0,75$ et de premier terme $v_0=a_0-1~200$ soit $v_0=500$.
    $\quad$
    b. Pour tout $n\in \N$ on a donc $v_n=500\times 0,75^n$.
    $\quad$
    c. Pour tout $n\in \N$ on a :
    $\begin{align*} a_n&=v_n+1~200 \\
    &=500\times 0,75^n+1~200\end{align*}$
    $\quad$
  6. a. $0<0,75<1$ donc $\lim\limits_{n\to +\infty} 0,75^n=0$. Ainsi $\lim\limits_{n\to +\infty} a_n=1~200$.
    $\quad$
    b. Sur le long terme, le club A comptera ainsi $1~200$ membres.
    $\quad$
  7. a. On peut écrire
    $$\begin{array}{|l|}
    \hline
    \texttt{def seuil() :}\\
    \hspace{0.8cm} \texttt{n = 0}\\
    \hspace{0.8cm} \texttt{A = 1700}\\
    \hspace{0.8cm} \texttt{while A >= 1280 :}\\
    \hspace{1.6cm} \texttt{n = n + 1}\\
    \hspace{1.6cm} \texttt{A = 0.75 * A + 300}\\
    \hspace{0.8cm} \texttt{return A}\\
    \hline
    \end{array}$$
    $\quad$
    b. On veut déterminer le plus petit entier naturel $n$ tel que :
    $\begin{align*} a_n< 1~280 &\ssi 500\times 0,75^n+1200< 1~280 \\
    &\ssi 500\times 0,75^n< 80 \\
    &\ssi 0,75^n < 0,16\\
    &\ssi n\ln(0,75)<\ln(0,16) \\
    &\ssi n>\dfrac{\ln(0,16)}{\ln(0,75)} \qquad \text{(car $\ln(0,75)<0$)}\end{align*}$
    Or $\dfrac{\ln(0,16)}{\ln(0,75)} \approx 6,4$.
    Ainsi l’appel de la fonction $\texttt{seuil}$ renverra $7$.
    $\quad$

Ex 3

Exercice 3

  1. a. $\vect{EF}\begin{pmatrix}-4\\4\\2\end{pmatrix}$ et $\vect{FG}\begin{pmatrix} 4\\0\\-4\end{pmatrix}$
    $\quad$
    b. Ces deux vecteurs ne sont pas colinéaires puisqu’ils n’ont pas la même composante nulle.
    Ainsi les points $E$, $F$ et $G$ ne sont pas alignés.
    $\quad$
  2. a. Une représentation paramétrique de la droite $(FG)$ est donc $$\begin{cases} x=-1+4t\\y=2\\z=1-4t\end{cases} \qquad \forall t\in \R$$
    $\quad$
    b. $-1+4t=2\ssi 4t=3\ssi t=\dfrac{3}{4}$
    $4t-1=-2 \ssi -1+4t=2\ssi t=\dfrac{3}{4}$
    Donc en prenant $t=\dfrac{3}{4}$ dans la représentation paramétrique de la droite $(FG)$ on retrouve les coordonnées de point $H$.
    De plus $\vect{EH}\begin{pmatrix}-1\\4\\-1\end{pmatrix}$.
    Ainsi $\vect{EH}.\vect{FG}=-4+0+4=0$.
    Les droites $(EH)$ et $(FG)$ sont perpendiculaires en $H$.
    $H$ est le projeté orthogonal du point $E$ sur la droite $(FG)$.
    $\quad$
    c. On a :
    $\begin{align*} FG&=\sqrt{4^2+0+(-4)^2} \\
    &=\sqrt{32} \\
    &=4\sqrt{2}\end{align*}$
    $\begin{align*} EH&=\sqrt{(-1)^2+4^2+(-1)^2} \\
    &=\sqrt{18} \\
    &=3\sqrt{2}\end{align*}$
    L’aire du triangle $EFG$ est donc égale à :
    $\begin{align*} \mathscr{A}&=\dfrac{EH\times FG}{2} \\
    &=\dfrac{4\sqrt{2}\times 3\sqrt{2}}{2} \\
    &=12 \text{ cm}^2\end{align*}$
    $\quad$
  3. a. $\vec{n}.\vect{EF}=-8+4+4=0$
    $\vec{n}.\vect{FG}=8+0-8=0$
    Le vecteur $\vec{n}$ est orthogonal à deux vecteurs non colinéaires du plan $(EFG)$.
    Il est donc normal au plan $(EFG)$.
    $\quad$
    b. Une équation cartésienne du plan $(EFG)$ est de la forme $2x+y+2z+d=0$.
    $E(3;-2;-1)$ appartient à ce plan.
    Ainsi $6-2-2+d=0 \ssi d=-2$.
    Une équation cartésienne du plan $(EFG)$ est donc $2x+y+2z-2=0$.
    $\quad$
    c. Une représentation paramétrique de la droite $(d)$ est donc $$\begin{cases}x=3+2k\\y=1+k\\z=5+2k\end{cases} \qquad \forall k\in \R$$
    $\quad$
    d. On résout le système :
    $\begin{align*} \begin{cases}x=3+2k\\y=1+k\\z=5+2k\\2x+y+2z-2=0\end{cases}&\ssi \begin{cases}x=3+2k\\y=1+k\\z=5+2k\\6+4k+1+k+10+4k-2=0\end{cases} \\
    &\ssi \begin{cases}x=3+2k\\y=1+k\\z=5+2k\\9k=-15\end{cases} \\
    &\ssi \begin{cases}k=-\dfrac{5}{3}\\[2mm]x=-\dfrac{1}{3}\\[2mm]y=-\dfrac{2}{3}\\[2mm]z=\dfrac{5}{3}\end{cases}\end{align*}$
    Donc $K$ a pour coordonnées $\left(-\dfrac{1}{3};-\dfrac{2}{3};\dfrac{5}{3}\right)$.
    $\quad$
  4. a. $\vect{DK}\begin{pmatrix}-\dfrac{10}{3}\\[2mm]-\dfrac{5}{3}\\[2mm]-\dfrac{10}{3}\end{pmatrix}$
    $\begin{align*} DK&=\sqrt{\left(-\dfrac{10}{3}\right)^2+\left(-\dfrac{5}{3}\right)^2+\left(-\dfrac{10}{3}\right)^2} \\
    &=\sqrt{\dfrac{100}{9}+\dfrac{25}{9}+\dfrac{100}{9}} \\
    &=\sqrt{25} \\
    &=5 \text{ cm}\end{align*}$
    $\quad$
    b. Le volume du tétraèdre $DEFG$ est :
    $\begin{align*} V&=\dfrac{1}{3}\times \mathscr{A}\times DK \\
    &=\dfrac{1}{3}\times 12\times 5 \\
    &=20\text{ cm}^3\end{align*}$
    $\quad$

 

Ex 4

Exercice 4

  1. Pour tout réel $x>1$ on a $f(x)=0,05-\dfrac{\ln(x)}{x}\times \dfrac{x}{x-1}$.
    D’après la limite des termes de plus haut degré $\lim\limits_{x\to +\infty} \dfrac{x}{x-1}=\lim\limits_{x\to +\infty} \dfrac{x}{x}=1$.
    Par croissances comparées $\lim\limits_{x\to +\infty} \dfrac{\ln(x)}{x}=0$.
    Ainsi $\lim\limits_{x\to +\infty} f(x)=0,05$.
    Réponse b
    $\quad$
  2. La fonction $h$ est continue sur l’intervalle $[-2;4]$ et donc également sur l’intervalle $[1;3]$.
    $h(1)=4>0$ et $h(3)=-1<0$.
    D’après le théorème des valeurs intermédiaires, l’équation $h(x)=0$ admet au moins une solution sur l’intervalle $[1;3]$.
    Réponse c
    $\quad$
  3. $\lim\limits_{n\to +\infty} u_n=+\infty$. Il existe donc un entier naturel $N$ tel que, pour tout $n\pg N$, on ait $u_n\pg 1$.
    Par conséquent, pour tout $n\pg N$ : $0\pp \dfrac{1}{u_n} \pp 1$ et $0\pp \dfrac{v_n}{u_n}\pp v_n$.
    $\lim\limits_{n\to +\infty} v_n=0$.
    D’après le théorème des gendarmes, $\lim\limits_{n\to +\infty} \dfrac{v_n}{u_n}=0$.
    Réponse b
    $\quad$
  4. On considère la variable aléatoire $X$ égale au gain algébrique du joueur.
    $P(X=8)=\dfrac{1}{6}$ (s’il obtient $1$)
    $P(X=-1)=\dfrac{1}{2}$ (s’il obtient un nombre pair)
    $P(X=-4)=\dfrac{1}{3}$ (sinon)
    L’espérance de $X$ est :
    $\begin{align*} E(X)&=8\times \dfrac{1}{6}-1\times \dfrac{1}{2}-4\times \dfrac{1}{3} \\
    &=-\dfrac{1}{2}\end{align*}$
    Réponse d
    $\quad$
  5. $\quad$
    $\begin{align*} P(X=0)=\dfrac{1}{125}&\ssi (1-p)^3=\dfrac{1}{125} \\
    &\ssi 1-p=\dfrac{1}{5} \\
    &\ssi p=\dfrac{4}{5}\end{align*}$
    Réponse c
    $\quad$

 

 

Énoncé

Télécharger (PDF, 3.14Mo)

Si l’énoncé ne s’affiche pas directement rafraîchissez l’affichage.