Bac – Spécialité mathématiques – Asie – sujet 2 – 18 mai 2022

Centres étrangers – Asie – 18 mai 2022

Spécialité maths – Sujet 2- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. a. $\vect{AB}\begin{pmatrix} 5\\1\\0\end{pmatrix}$, $\vect{DC}\begin{pmatrix} 5\\1\\0\end{pmatrix}$ et $\vect{AD}\begin{pmatrix} -1\\5\\-4\end{pmatrix}$.
    $\quad$
    b. $\vect{AB}=\vect{DC}$ donc $ABCD$ est un parallélogramme.
    De plus
    $\begin{align*} \vect{AB}.\vect{AD}&=5\times (-1)+1\times 5+0\times (-4) \\
    &=-5+5+0\\
    &=0\end{align*}$
    $ABCD$ est donc un parallélogramme dont deux côtés consécutifs sont perpendiculaires.
    Par conséquent $ABCD$ est un rectangle.
    $\quad$
    c. On a
    $\begin{align*} AB&=\sqrt{5^2+1^2+0^2} \\
    &=\sqrt{26}\end{align*}$
    et
    $\begin{align*} AD&=\sqrt{(-1)^2+5^2+(-4)^2} \\
    &=\sqrt{42}\end{align*}$
    L’aire du rectangle $ABCD$ est donc
    $\begin{align*} \mathscr{A}&=AB\times AD \\
    &=\sqrt{26}\times \sqrt{42}\\
    &=2\sqrt{273}\end{align*}$
    $\quad$
  2. a. Les vecteurs $\vect{AB}$ et $\vect{AD}$ ne sont pas colinéaires (une des coordonnées de $\vect{AB}$ est nulle tandis que la même coordonnée de $\vect{AD}$ ne l’est pas).
    Ainsi $A$, $B$ et $D$ définissent bien un plan.
    $\quad$
    b. D’une part
    $\begin{align*} \vec{n}.\vect{AB}&=-2\times 5+10\times 1+13\times 0\\
    &=-10+10+0\\
    &=0\end{align*}$
    D’autre part
    $\begin{align*} \vec{n}.\vect{AD}&=-2\times (-1)+10\times 5+13\times (-4)\\
    &=2+50-52\\
    &=0\end{align*}$
    Le vecteur $\vec{n}$ est donc orthogonal à deux vecteurs non colinéaires du plan $(ABD)$.
    $\vec{n}$ est donc normal au plan $(ABD)$.
    $\quad$
    c. Une équation cartésienne du plan $(ABD)$ est donc de la forme $-2x+10y+13z+d=0$.
    Le point $A(-3;1;3)$ appartient à ce plan.
    Par conséquent $6+10+39+d=0\ssi d=-55$
    Une équation cartésienne du plan $(ABD)$ est donc $-2x+10y+13z-55=0$.
    $\quad$
  3. a. Le vecteur $\vec{n}$ est un vecteur directeur de la droite $\Delta$.
    Une représentation paramétrique de la droite $\Delta$ est donc $$\begin{cases} x=-3-2t\\y=14+10t\\z=14+13t\end{cases} \quad t\in \R$$
    $\quad$
    b. Les coordonnées du point $I$ sont solution du système:
    $\begin{align*} \begin{cases} x=-3-2t\\y=14+10t\\z=14+13t\\-2x+10y+13z-55=0\end{cases}&\ssi \begin{cases} x=-3-2t\\y=14+10t\\z=14+13t\\-2(-3-2t)+10(14+10t)+13(14+13t)-55=0\end{cases} \\
    &\ssi \begin{cases} x=-3-2t\\y=14+10t\\z=14+13t\\6+4t+140+100t+182+169t-55=0\end{cases}\\
    &\ssi \begin{cases} x=-3-2t\\y=14+10t\\z=14+13t\\273t+273=0\end{cases}\\
    &\ssi \begin{cases} t=-1\\x=-1\\y=4\\z=1\end{cases}\end{align*}$
    Le point $I$ a donc pour coordonnées $(-1;4;1)$.
    $\quad$
    c. $\vect{IK}\begin{align*} -2\\10\\-13\end{align*}$
    Donc
    $\begin{align*} IK&=\sqrt{(-2)^2+10^2+(-13)^2} \\
    &=\sqrt{273}\end{align*}$
    Ainsi la hauteur de la pyramide $KABCD$ de base $ABCD$ et de sommet $K$ vaut bien $\sqrt{273}$.
    $\quad$
  4. Le volume de la pyramide $KABCD$ est
    $\begin{align*} V&=\dfrac{1}{3}\times \mathscr{A}\times IK \\
    &=\dfrac{1}{3}\times 2\sqrt{273}\times \sqrt{273} \\
    &=182\end{align*}$
    $\quad$

 

 

Ex 2

Exercice 2

Partie A

  1. La courbe $\mathscr{C}_2$ représente une fonction qui semble être strictement positive et strictement décroissante sur $]3;+\infty[$. La courbe de sa fonction dérivée est  strictement située en dessous de l’axe des abscisses ce qui n’est pas le cas de la courbe $\mathscr{C}_1$.
    En revanche la courbe $\mathscr{C}_1$ semble représenter une fonction strictement croissante. La courbe de sa fonction dérivée est donc située strictement au-dessus de l’axe des abscisses.
    Ainsi $f$ est représentée par $\mathscr{C}_1$ et $f’$ par $\mathscr{C}_2$.
    $\quad$
  2. Graphiquement l’équation $f(x)=3$ admet une unique solution qui vaut environ $5,6$.
    $\quad$
  3. Graphiquement la fonction $f$ semble être concave sur $\R$.
    $\quad$

Partie B

  1. On étudie le signe de la fonction $g$ définie sur $]3;+\infty[$ par $g(x)=x^2-x-6$.
    Le discriminant est $\Delta =25>0$.
    Les racines de $x^2-x-6$ sont donc $x_1=\dfrac{1-\sqrt{25}}{2}=-2$ et $x_2=\dfrac{1+\sqrt{25}}{2}=3$.
    Le coefficient principale de $x^2-x-6$ est $a=1>0$.
    Ainsi $g(x)>0$ sur $]3;+\infty[$.
    Par conséquent $\ln\left(x^2-x-6\right)$ est bien définie sur $]3;+\infty[$.
    $\quad$
  2. $\lim\limits_{x\to 3^+} x^2-x-6=0$ et $\lim\limits_{X\to 0^+} \ln(X)=-\infty$ donc $\lim\limits_{x\to 3^+} f(x)=-\infty$.
    $\lim\limits_{x\to +\infty} x^2-x-6=0$ (fonction du second degré dont le coefficient principal est positif) et $\lim\limits_{X\to +\infty} \ln(X)=+\infty$ donc $\lim\limits_{x\to +\infty} f(x)=+\infty$.
    $\quad$
    La droite d’équation $x=3$ est donc asymptote à la courbe représentative de la fonction $f$.
    $\quad$
  3. a. La fonction $f$ est dérivable sur $I$ en tant que composée de fonctions dérivables.
    Pour tout réel $x\in I$ on a $f'(x)=\dfrac{2x-1}{x^2-x-6}$.
    $\quad$
    b. Pour tout réel $x\in I$ on a $x^2-x-6>0$. Ainsi, $f'(x)$ est du signe de $2x-1$.
    $2x-1=0\ssi 2x=1\ssi x=\dfrac{1}{2}$
    $2x-1>0 \ssi 2x>1\ssi x>\dfrac{1}{2}$
    Or $\dfrac{1}{2}<3$. Ainsi, pour tout réel $x\in I$, $f'(x)>0$.
    On obtient donc le tableau de variations suivant :$\quad$
  4. a. La fonction $f$ est continue (car dérivable) et strictement croissante sur $]3;+\infty[$ et donc sur $]5;6[$.
    De plus $f(5)\approx 2,64<3$ et $f(6)\approx 3,18>3$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $f(x)=3$ admet une unique solution sur l’intervalle $]5;6[$.
    $\quad$
    b. D’après la calculatrice $5,63<\alpha<5,64$.
    $\quad$
  5. a. La fonction $f’$ est dérivable sur $]3;+\infty[$ en tant que quotient de fonctions dérivables dont le dénominateur ne s’annule pas.
    Ainsi, pour tout réel $x\in I$
    $\begin{align*} f\dsec(x)&=\dfrac{2\left(x^2-x-6\right)-(2x-1)^2}{\left(x^2-x-6\right)^2} \\
    &=\dfrac{2x^2-2x-12-\left(4x^2-4x+1\right)}{\left(x^2-x-6\right)^2} \\
    &=\dfrac{-2x^2+2x-13}{\left(x^2-x-6\right)^2} \end{align*}$
    $\quad$
    b. Un carré étant toujours positif, le signe de $f\dsec(x)$ ne dépend que de celui de $-2x^2+2x-13$.
    Son discriminant est $\Delta=-100<0$
    Le coefficient principal du polynôme du second degré est $a=-2<0$.
    Ainsi, pour tout réel $x\in I$, $-2x^2+2x-13<0$.
    Par conséquent, pour tout réel $x\in I$, $f\dsec(x)<0$ et la fonction $f$ est concave sur $I$.
    $\quad$

Ex 3

Exercice 3

Partie 1

  1. S’il prend le bus de 8 h, il est sûr d’être à l’heure à l’aéroport à temps pour son vol. Donc $P_B(V)=1$.
    $\quad$
  2. On obtient l’arbre pondéré suivant :
    $\quad$
  3. $\left(B,\conj{B}\right)$ forme un système complet d’événements fini.
    D’après la formule des probabilités totales on a
    $\begin{align*} P(V)&=P(B\cap V)+P\left(\conj{B}\cap V\right) \\
    &=P(B)\times P_B(V)+P\left(\conj{B}\right)\times P_{\conj{B}}(V) \\
    &=0,2\times 1+0,8\times 0,5 \\
    &=0,6\end{align*}$
    $\quad$
  4. On veut calculer
    $\begin{align*} P_V(B)&=\dfrac{P(V\cap B)}{P(V)} \\
    &=\dfrac{0,2\times 1}{0,6}\\
    &=\dfrac{1}{3}\end{align*}$
    La probabilité que Julien soit arrivé à l’aéroport en bus sachant qu’il est à l’heure à l’aéroport pour son vol est égale à $\dfrac{1}{3}$.
    $\quad$

Partie 2

  1. On répète, de façon indépendante, $206$ fois la même expérience de Bernoulli. $X$ compte le nombre de passagers se présentant à l’embarquement.
    Donc $X$ suit la loi binomiale de paramètres $n=206$ et $p=0,95$.
    $\quad$
  2. L’espérance mathématique de $X$ est
    $\begin{align*} E(X)&=np\\
    &=206\times 0,95 \\
    &=195,7\end{align*}$
    En moyenne, $195,7$ (soit environ $196$) passagers vont se présenter à l’embarquement.
    $\quad$
  3. On a
    $\begin{align*} P(X=201)&=\dbinom{206}{201} \times 0,95^{201}\times 0,05^5 \\
    &\approx 0,031\end{align*}$
    La probabilité que $201$ passagers se présentent à l’embarquement est environ égale à $0,031$.
    $\quad$
  4. D’après la calculatrice, $P(X\pp 200)\approx 0,948$.
    La probabilité que le nombre de passagers se présentant à l’embarquement soit inférieur à la capacité de l’avion est environ égale à $0,948$.
    $\quad$
  5. a. On a :
    $\begin{align*} P(Y=6)&=1-\left(P(Y=0)+P(Y=1)+\ldots+P(Y=5)\right) \\
    &=0,000~03\end{align*}$
    $\quad$
    b. $206$ billets ont été vendus. La compagnie a donc encaissé $206\times 250=51~500$ euros.
    Pour chaque passager lésé la compagnie doit payer $250+600=850$ euros.
    Il y a $Y$ passagers lésés.
    Ainsi $C=51~500-850Y$.
    $\quad$
    c. La loi de probabilité de $C$ est donc donnée par le tableau suivant :
    $$\begin{array}{|c|c|c|c|c|c|c|c|}
    \hline
    c_i&51~500&50~650&49~800&48~950&48100&47~250&46~400 \\
    \hline
    P\left(C=c_i\right)&0,947~75&0,030~63&0,014~41&0,005~39&0,001~51&0,000~28&0,000~03\\
    \hline
    \end{array}$$
    L’espérance mathématique de $C$ est
    $\begin{align*} E(C)&=51~500\times P(C=51~500)+49~800\times P(C=50~650)+\ldots+46~400\times P(C=46~400) \\
    &=51~429,25\end{align*}$
    $\quad$
    d. En vendant $200$ billets le chiffre d’affaires est $200\times 250=50~000$ euros.
    Ainsi le chiffre d’affaires moyen en pratiquant le surbooking est supérieur à celui obtenu en vendant exactement $200$ billets.
    $\quad$

 

Ex 4

Exercice 4

  1. a. On a
    $\begin{align*} p_1&=0,3+0,7p_0^2 \\
    &=0,3+0,7\times 0,3^2 \\
    &=0,363\end{align*}$
    et
    $\begin{align*} p_2&=0,3+0,7p_1^2 \\
    &=0,3+0,7\times 0,363^2 \\
    &=0,392~238~3\end{align*}$
    La probabilité que la bactérie ait au plus une seule descendance est égale à $0,363$ et la probabilité qu’elle ait au plus deux descendance est égale à $0,392~238~3$.
    $\quad$
    b. La probabilité d’obtenir au moins $11$ générations de bactérie est $1-p_{10}\approx 0,572$.
    $\quad$
    c. La suite $\left(p_n\right)$ semble être croissante et converger vers un réel sont la valeur est environ égale à $0,428~5$.
    $\quad$
  2. a. Pour tout entier naturel $n$ on pose $R(n):~0\pp p_n\pp p_{n+1} \pp 0,5$.
    Initialisation : $p_0=0,3$ et $p_1=0,363$ donc $0\pp p_0\pp p_1 \pp 0,5$.
    Par conséquent $R(0)$ est vraie.
    $\quad$Hérédité : Soit $n\in \N$. On suppose $R(n)$ vraie.
    $\begin{align*} 0\pp p_n\pp p_{n+1}\pp 0,5&\Rightarrow 0 \pp p_n^2\pp p_{n+1}^2 \pp 0,25 \\
    &\Rightarrow 0 \pp 0,7p_n^2\pp 0,7p_{n+1}^2 \pp 0,175 \\
    &\Rightarrow 0,3 \pp 0,3+0,7p_n^2\pp 0,3+0,7p_{n+1}^2 \pp 0,475 \end{align*}$
    Par conséquent $0\pp 0,3\pp p_{n+1}\pp p_{n+2} \pp 0,475\pp 0,5$ et $R(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Par conséquent, pour tout entier naturel $n$, $0\pp p_n\pp p_{n+1} \pp 0,5$.
    $\quad$
    b. La suite $\left(p_n\right)$ est croissante et majorée par $0,5$; elle converge donc vers un réel $L$.
    $\quad$
  3. a. La fonction $f:~x\mapsto 0,3+0,7x^2$ est continue sur $\R$ et, pour tout $n\in \N$, $p_{n+1}=f\left(p_n\right)$.
    Ainsi $L$ est solution de l’équation $x=f(x)$ soit $0,7x^2-x+0,3=0$.
    $\quad$
    b. Le discriminant de $0,7x^2-x+0,3$ est $\Delta =0,16>0$.
    Ce polynôme du second degré admet donc deux racines : $x_1=\dfrac{1-\sqrt{0,16}}{1,4}=\dfrac{3}{7}$ et $x_2=\dfrac{1+\sqrt{0,16}}{1,4}=1$.
    Seule $x_1$ appartient à l’intervalle $[0;0,5]$.
    Donc $L=\dfrac{3}{7}$.
    $\quad$
  4. On obtient la fonction suivante :
    $$\begin{array}{|l|}
    \hline
    \text{def suite(n) :}\\
    \quad \text{p = 0.3}\\
    \quad \text{s= [p]}\\
    \quad \text{for i in range(n – 1):}\\
    \qquad \text{p = 0.3 + 0.7 * p ** 2}\\
    \qquad \text{s.append(p)}\\
    \quad \text{return (s)}\\
    \hline
    \end{array}$$
    $\quad$

 

Énoncé

Exercice 1     7 points

Principaux domaines abordés : Manipulation des vecteurs, des droites et des plans de l’espace. Orthogonalité et distances dans l’espace. Représentations paramétriques et équations cartésiennes.

Dans un repère orthonormé $\Oijk$ de l’espace, on considère les points $$A(-3 ; 1 ; 3),~B(2 ; 2 ; 3),~C(1 ; 7 ; -1),~D(-4 ; 6 ; -1) \text{ et } K(-3 ; 14 ; 14)$$

  1. a. Calculer les coordonnées des vecteurs $\vect{AB}$, $\vect{DC}$ et $\vect{AD}$.
    $\quad$
    b. Montrer que le quadrilatère $ABCD$ est un rectangle.
    $\quad$
    c. Calculer l’aire du rectangle $ABCD$.
    $\quad$
  2. a. Justifier que les points $A$, $B$ et $D$ définissent un plan.
    $\quad$
    b. Montrer que le vecteur $\vec{n}(-2 ; 10 ; 13)$ est un vecteur normal au plan $(ABD)$.
    $\quad$
    c. En déduire une équation cartésienne du plan $(ABD)$.
    $\quad$
  3. a. Donner une représentation paramétrique de la droite ∆$\Delta$ orthogonale au plan $(ABD)$ et qui passe par le point $K$.
    $\quad$
    b. Déterminer les coordonnées du point $I$, projeté orthogonal du point $K$ sur le plan $(ABD)$.
    $\quad$
    c. Montrer que la hauteur de la pyramide $KABCD$ de base $ABCD$ et de sommet $K$ vaut $\sqrt{273}$.
    $\quad$
  4. Calculer le volume $V$ de la pyramide $KABCD$.
    On rappelle que le volume $V$ d’une pyramide est donné par la formule : $$V =\dfrac{1}{3}\times \text{aire de la base} \times \text{hauteur}$$
    $\quad$

$\quad$

Exercice 2     7 points

Principaux domaines abordés : Étude des fonctions. Fonction logarithme.

Partie A

 

Dans le repère orthonormé ci-dessus, sont tracées les courbes représentatives d’une fonction $f$ et de sa fonction dérivée, notée $f’$
, toutes deux définies sur $]3 ; +\infty[$.

  1. Associer à chaque courbe la fonction qu’elle représente. Justifier.
    $\quad$
  2. Déterminer graphiquement la ou les solutions éventuelles de l’équation $f (x) = 3$.
    $\quad$
  3. Indiquer, par lecture graphique, la convexité de la fonction $f$.
    $\quad$

Partie B

  1. Justifier que la quantité $\ln\left(x^2-x-6\right)$ est bien définie pour les valeurs $x$ de l’intervalle $]3 ; +\infty[$, que l’on nommera $I$ dans la suite.
    $\quad$
  2. On admet que la fonction $f$ de la Partie A est définie par $f(x)\ln\left(x^2-x-6\right)$ sur $I$.
    Calculer les limites de la fonction $f$ aux deux bornes de l’intervalle $I$.
    En déduire une équation d’une asymptote à la courbe représentative de la fonction $f$ sur $I$.
    $\quad$
  3. a. Calculer $f'(x)$ pour tout $x$ appartenant à $I$.
    $\quad$
    b. Étudier le sens de variation de la fonction $f$ sur $I$.
    Dresser le tableau des variations de la fonction $f$ en y faisant figurer les limites aux bornes de $I$.
    $\quad$
  4. a. Justifier que l’équation $f(x) = 3$ admet une unique solution $\alpha$ sur l’intervalle $]5; 6[.$
    $\quad$
    b. Déterminer, à l’aide de la calculatrice, un encadrement de $\alpha$ à $10^{-2}$ près.
    $\quad$
  5. a. Justifier que $f\dsec(x)=\dfrac{-2x^2+2x-13}{\left(x^2-x-6\right)^2}$.
    $\quad$
    b. Étudier la convexité de la fonction $f$ sur $I$.
    $\quad$

$\quad$

Exercice 3     7 points

Principaux domaines abordés: Probabilités conditionnelles et indépendance. Variables aléatoires.

Les deux parties de cet exercice sont indépendantes

Partie 1
Julien doit prendre l’avion; il a prévu de prendre le bus pour se rendre à l’aéroport.
S’il prend le bus de 8 h, il est sûr d’être à l’aéroport à temps pour son vol.
Par contre, le bus suivant ne lui permettrait pas d’arriver à temps à l’aéroport.
Julien est parti en retard de son appartement et la probabilité qu’il manque son bus est de $0,8$.
S’il manque son bus, il se rend à l’aéroport en prenant une compagnie de voitures privées; il a alors une probabilité de $0,5$ d’être à l’heure à l’aéroport.
On notera :

  • $B$ l’évènement : « Julien réussit à prendre son bus »;
  • $V$ l’évènement : « Julien est à l’heure à l’aéroport pour son vol ».
  1. Donner la valeur de $P_B (V )$.
    $\quad$
  2. Représenter la situation par un arbre pondéré.
    $\quad$
  3. Montrer que $P(V) = 0,6$.
    $\quad$
  4. Si Julien est à l’heure à l’aéroport pour son vol, quelle est la probabilité qu’il soit arrivé à l’aéroport en bus ? Justifier.
    $\quad$

Partie 2

Les compagnies aériennes vendent plus de billets qu’il n’y a de places dans les avions car certains passagers ne se présentent pas à l’embarquement du vol sur lequel ils ont réservé.
On appelle cette pratique le surbooking.
Au vu des statistiques des vols précédents, la compagnie aérienne estime que chaque passager a $5 \%$ de chance de ne pas se présenter à l’embarquement.
Considérons un vol dans un avion de $200$ places pour lequel $206$ billets ont été vendus. On suppose que la présence à l’embarquement de chaque passager est indépendante des autres passagers et on appelle $X$ la variable aléatoire qui compte le nombre de passagers se présentant à l’embarquement.

  1. Justifier que $X$ suit une loi binomiale dont on précisera les paramètres.
    $\quad$
  2. En moyenne, combien de passagers vont-ils se présenter à l’embarquement ?
    $\quad$
  3. Calculer la probabilité que $201$ passagers se présentent à l’embarquement. Le résultat sera arrondi à $10^{-3}$ près.
    $\quad$
  4. Calculer $P(X \pp 200)$, le résultat sera arrondi à $10^{-3}$ près. Interpréter ce résultat dans le contexte de l’exercice.
    $\quad$
  5. La compagnie aérienne vend chaque billet à $250$ euros.
    Si plus de $200$ passagers se présentent à l’embarquement, la compagnie doit rembourser le billet d’avion et payer une pénalité de $600$ euros à chaque passager lésé.
    On appelle :
    $\bullet~~Y$ la variable aléatoire égale au nombre de passagers qui ne peuvent pas embarquer bien qu’ayant acheté un billet;
    $\bullet~~C$ la variable aléatoire qui totalise le chiffre d’affaire de la compagnie aérienne sur ce vol.
    $\quad$
    On admet que $Y$ suit la loi de probabilité donnée par le tableau suivant :
    $$\begin{array}{|c|c|c|c|c|c|c|c|}
    \hline
    y_i& 0& 1& 2& 3& 4& 5& 6\\
    \hline
    P\left(Y = y_i\right)&0,947~75& 0,030~63 &0,014~41 &0,005 ~39 &0,001~51& 0,000~28&\phantom{0,000~28}\\
    \hline
    \end{array}$$
    a. Compléter la loi de probabilité donnée ci-dessus en calculant $P(Y = 6)$.
    $\quad$
    b. Justifier que : $C = 51500−850Y$.
    $\quad$
    c. Donner la loi de probabilité de la variable aléatoire $C$ sous forme d’un tableau.
    Calculer l’espérance de la variable aléatoire $C$ à l’euro près.
    $\quad$
    d. Comparer le chiffre d’affaires obtenu en vendant exactement $200$ billets et le chiffre d’affaires moyen obtenu en pratiquant le surbooking.
    $\quad$

$\quad$

Exercice 4     7 points

Principaux domaines abordés: Suites numériques. Algorithmique et programmation.

On s’intéresse au développement d’une bactérie.
Dans cet exercice, on modélise son développement avec les hypothèses suivantes : cette bactérie a une probabilité $0,3$ de mourir sans descendance et une probabilité $0,7$ de se diviser en deux bactéries filles.
Dans le cadre de cette expérience, on admet que les lois de reproduction des bactéries sont les mêmes pour toutes les générations de bactéries qu’elles soient mère ou fille.
Pour tout entier naturel $n$, on appelle $p_n$ la probabilité d’obtenir au plus $n$ descendances pour une bactérie.
On admet que, d’après ce modèle, la suite $\left(p_n\right)$ est définie de la façon suivante :
$p_0 = 0,3$ et, pour tout entier naturel $n$, $$p_{n+1} = 0,3+0,7p_n^2$$

  1. La feuille de calcul ci-dessous donne des valeurs approchées de la suite $\left(p_n\right)$.
    $\quad$
    a. Déterminer les valeurs exactes de $p_1$ et $p_2$ (masquées dans la feuille de calcul) et interpréter ces valeurs dans le contexte de l’énoncé.
    $\quad$
    b. Quelle est la probabilité, arrondie à $10^{-3}$ près, d’obtenir au moins $11$ générations de bactéries à partir d’une bactérie de ce type ?
    $\quad$
    c. Formuler des conjectures sur les variations et la convergence de la suite $\left(p_n\right)$.
    $\quad$
  2. a. Démontrer par récurrence sur $n$ que, pour tout entier naturel $n$, $0\pp p_n \pp p_{n+1}\pp 0,5$.
    $\quad$
    b. Justifier que la suite $\left(p_n\right)$ est convergente.
    $\quad$
  3. On appelle $L$ la limite de la suite $\left(p_n\right)$.
    a. Justifier que $L$ est solution de l’équation $0,7x
    2- x+0,3 = 0$
    $\quad$
    b. Déterminer alors la limite de la suite $\left(p_n\right)$.
    $\quad$
  4. La fonction suivante, écrite en langage Python, a pour objectif de renvoyer les $n$ premiers termes de la suite $\left(p_n\right)$.
    $$\begin{array}{ll}
    \begin{array}{l} 1\\2\\3\\4\\5\\6\\7\end{array}&\begin{array}{|l|}\hline\text{def suite(n) :}\\
    \quad \text{p = …}\\
    \quad \text{s = [p]}\\
    \quad \text{for i in range (…):}\\
    \quad \text{p = …}\\
    \quad \text{s.append(p)}\\
    \quad \text{return (s)}\\
    \hline
    \end{array}\end{array}$$
    Recopier, sur votre copie, cette fonction en complétant les lignes 2, 4 et 5 de façon à ce que la fonction $\texttt{suite(n)}$ retourne, sous forme de liste, les $n$ premiers termes de la suite.
    $\quad$

$\quad$