Bac – Spécialité mathématiques – Asie – sujet 2 – 24 mars 2023

Asie – 24 mars 2023

Spécialité maths – Sujet 2 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. L’aire du triangle $FBG$ est égale à la moitié de l’aire du carré unité $BCGF$.
    $I$ est le milieu de $[EF]$ et $EF=AB$ donc $FI=\dfrac{1}{2}$.
    L’aire du tétraèdre $FIGB$ est donc :
    $\begin{align*} \mathscr{V}&=\dfrac{1}{3}\times \mathscr{A}_{FBG}\times FI \\
    &=\dfrac{1}{3}\times \dfrac{1}{2}\times \dfrac{1}{2}\\
    &=\dfrac{1}{12} \text{u.v.}\end{align*}$
    $\quad$
  2. $\quad$
    $\begin{align*} \vect{AI}&=\vect{AE}+\vect{EI} \\
    &=\vect{AE}+\dfrac{1}{2}\vect{EF} \\
    &=\vect{AE}+\dfrac{1}{2}\vect{AB}\end{align*}$
    Par conséquent $I$ a pour coordonnées $\left(\dfrac{1}{2};0;1\right)$.
    $\quad$
  3. $\vect{BI}\begin{pmatrix}-\dfrac{1}{2}\\[2mm]0\\1\end{pmatrix}$, $\vect{BG}\begin{pmatrix}0\\1\\1\end{pmatrix}$ et $\vect{DJ}\begin{pmatrix}2\\-1\\1\end{pmatrix}$
    $\vect{DJ}.\vect{BI}=-1+0+1=0$
    $\vect{DJ}.\vect{BG}=0-1+1=0$
    Les vecteur $\vect{DJ}$ est donc orthogonal à deux vecteurs non colinéaires (ils n’ont pas la même composante nulle) du plan $(BIG)$.
    Par conséquent $\vect{DJ}$ est un vecteur normal au plan $(BIG)$.
    $\quad$
  4. Une équation cartésienne du plan $(BIG)$ est alors de la forme $2x-y+z+d=0$.
    $B(1;0;0)$ appartient au plan $(BIG)$. Donc $2+0+0+d=0 \ssi d=-2$.
    Une équation cartésienne du plan $(BIG)$ est par conséquent $2x-y+z-2=0$.
    $\quad$
  5. Une représentation paramétrique de la droite $d$ est $$\begin{cases} x=1+2t\\y=-t\\z=1+t\end{cases} \qquad \forall t\in \R$.
    $\quad$
  6. a. En prenant $t=-\dfrac{1}{6}$ dans la représentation paramétrique de $d$ on obtient $x=\dfrac{2}{3}$, $y=\dfrac{1}{6}$ et $z=\dfrac{5}{6}$.
    De plus $2\times \dfrac{2}{3}-\dfrac{1}{6}+\dfrac{5}{6}-2=\dfrac{4}{3}+\dfrac{2}{3}-2=0$.
    Le point de coordonnées $\left(\dfrac{2}{3};\dfrac{1}{6};\dfrac{5}{6}\right)$ appartient donc à la fois à la droite $d$ et au plan $(BIG)$.
    La droite $d$ coupe le plan $(BIG)$ au point $L$.
    Ainsi $L$ a pour coordonnées $\left(\dfrac{2}{3};\dfrac{1}{6};\dfrac{5}{6}\right)$.
    $\quad$
    b. $\vect{FL}\begin{pmatrix} -\dfrac{1}{3}\\[2mm]\dfrac{1}{6}\\[2mm]-\dfrac{1}{6}\end{pmatrix}$.
    Par conséquent :
    $\begin{align*} FL&=\sqrt{\left(-\dfrac{1}{3}\right)^2+\left(\dfrac{1}{6}\right)^2+\left(-\dfrac{1}{6}\right)^2} \\
    &=\sqrt{\dfrac{1}{9}+\dfrac{2}{36}}\\
    &=\sqrt{\dfrac{1}{6}} \\
    &=\dfrac{\sqrt{6}}{6}\end{align*}$
    $\quad$
    c. On appelle $\mathscr{A}$ l’aire du triangle $IGB$.
    On a alors
    $\begin{align*} V=\dfrac{1}{3}\times \mathscr{A}\times FL\\ &\ssi \dfrac{1}{12}&=\dfrac{1}{3}\times \mathscr{A}\times \dfrac{\sqrt{6}}{6} \\
    &\ssi \mathscr{A}=\dfrac{\sqrt{6}}{4}\end{align*}$
    L’aire du triangle $IGB$ est donc égale à $\dfrac{\sqrt{6}}{4}$ u.a.
    $\quad$

 

 

Ex 2

Exercice 2

Partie A : Étude d’une fonction auxiliaire

  1. $\lim\limits_{x\to -\infty} \e^x=0$
    $\lim\limits_{x\to -\infty} 2x=-\infty$ donc $\lim\limits_{x\to -\infty} \e^{2x}=0$.
    Ainsi $\lim\limits_{x\to -\infty} g(x)=1$.
    $\quad$
  2. Pour tout réel $x$ on a $g(x)=\e^{2x}\left(1-\e^{-x}+\e^{-2x}\right)$
    Or, $\lim\limits_{x\to +\infty} \e^{2x}=+\infty$, $\lim\limits_{x\to +\infty} \e^{-x}=0$ et $\lim\limits_{x\to +\infty} \e^{-2x}=0$.
    Donc $\lim\limits_{x\to +\infty} g(x)=+\infty$.
    $\quad$
  3. La fonction $g$ est dérivable sur $\R$ en tant que somme de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a
    $\begin{align*} g'(x)&=2\e^{2x}-\e^x \\
    &=\e^{x}\left(2\e^x-1\right)\end{align*}$.
    $\quad$
  4. La fonction exponentielle est strictement positive sur $\R$.
    La signe de $g'(x)$ ne dépend donc que de celui de $2\e^x-1$.
    $2\e^x-1=0 \ssi 2\e^x=1 \ssi \e^x=\dfrac{1}{2} \ssi x=-\ln(2)$
    $2\e^x-1>0 \ssi 2\e^x>1 \ssi \e^x>\dfrac{1}{2} \ssi x>-\ln(2)$
    On obtient alors le tableau de variations suivant :
    $\quad$

    $\quad$
  5. La fonction $g$ admet un minimum qui vaut $\dfrac{3}{4}$.
    Par conséquent, pour tout réel $x$, on a $g(x)\pg \dfrac{3}{4}>0$.
    La fonction $g$ est strictement positive sur $\R$.
    $\quad$
  6. On pourrait écrire $\e^{2x}-\e^x+1>0 \ssi \begin{cases} X^2-X+1>0 \\X=\e^x\end{cases}$.
    Le discriminant du polynôme du second degré $X^2-X+1$ est $\Delta=-3<0$.
    Le coefficient principal de ce polynôme est $1>0$.
    Par conséquent, pour tout réel $X$ on a $X^2-X+1>0$.
    Donc $\e^{2x}-\e^x+1>0$ pour tout réel $x$.
    $\quad$

Partie B

  1. D’après la question A.5., pour tout tout réel $x$, on a $\e^{2x}-\e^x+1>0$.
    La fonction $\ln$ est définie sur $\R_+^*$.
    Par conséquent la fonction $f$ est bien définie sur $\R$.
    $\quad$
  2. La fonction $f$ est dérivable sur $\R$ en tant que composée de fonctions dérivables.
    Pour tout réel $x$ on a alors :
    $\begin{align*} f'(x)&=\dfrac{2\e^{2x}-\e^x}{\e^{2x}-\e^x+1} \\
    &=\dfrac{g'(x)}{g(x)}\end{align*}$
    $\quad$
  3. Une équation de la tangente à la courbe au point d’abscisse $0$ est $y=f'(0)x+f(0)$.
    Or $f(0)=0$ et $f'(0)=1$.
    Une équation de cette tangente est donc $y=x$.
    $\quad$
  4. $g'(x)>0 \ssi x>-\ln(2)$ d’après la question A.4
    Pour tout réel $x$, on a $g(x)>0$.
    Par conséquent $f$ est strictement croissante sur $\left[-\ln(2);+\infty\right[$.
    $\quad$
  5. La fonction $f$ est continue (car dérivable) et strictement croissante sur $\left[-\ln(2);+\infty\right[$.
    $f\left(-\ln(2)\right)=\ln\left(\dfrac{3}{4}\right)<2$.
    Pour tout réel $x$ on a $f(x)=\ln\left(g(x)\right)$.
    Or $\lim\limits_{x\to +\infty} g(x)=+\infty$ et $\lim\limits_{X\to +\infty} \ln(X)=+\infty$ donc $\lim\limits_{x\to +\infty} f(x)=+\infty$.
    Or $2\in \left]\ln\left(\dfrac{3}{4}\right);+\infty\right[$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires), l’équation $f(x)=2$ admet une unique solution $\alpha$ sur $\left[-\ln(2);+\infty\right[$.
    D’après la calculatrice $\alpha\approx 1,12$.
    $\quad$

Partie C

D’après la question B.5. l’équation $f(x)=2$ admet bien au moins une solution. La conjecture 1 est vraie.

$-\ln(2)\approx -0,69<-0,5$. La fonction $f$ est strictement croissante sur $\left[-\ln(2);+\infty\right[$. La conjecture 2 est fausse.

Une équation de la tangente à la courbe au point d’abscisse $0$ est $y=x$. La conjecture 3 est fausse.

$\quad$

 

Ex 3

Exercice 3

  1. a. Le premier jour on dispose de $2$ g de polonium.
    Par conséquent :
    $\begin{align*} v_0&=2\times 3\times 10^{21} \\
    &=6\times 10^{21}\end{align*}$
    $\quad$
    b. Chaque jour $0,5\%$ des noyaux se sont désintégrés. Il en reste donc $0,995u_n$.
    Chaque jour, on ajoute $0,005$ g de polonium.
    Ainsi, pour tout $n\in \N$ on a :
    $\begin{align*} v_{n+1}&=0,995u_n+0,005\times 3\times 10^{21} \\
    &=0,995u_n+1,5\times 10^{19}\end{align*}$
    $\quad$
  2. a. Pour tout entier naturel $n$ on pose $P(n):~0\pp v_{n+1} \pp v_n$.
    Initialisation : $v_0=6\times 10^{21}$ et $v_1=0,995v_0+1,5\times 10^{19}$ soit $v_1=5,985\times 10^{21}$.
    On a bien $0\pp v_{1} \pp v_0$ et $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    $\begin{align*} 0\pp v_{n+1} \pp v_n&\ssi 0\pp 0,995 v_{n+1} \pp 0,995 v_n \\
    &\ssi 1,5\times 10^{19}\pp 0,995v_{n+1}+1,5\times 10^{19}\pp 0,995v_n+1,5\times 10^{19}\end{align*}$
    Par conséquent $0\pp v_{n+2}\pp v_{n+1}$ et $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Par conséquent, pour tout entier naturel $n$, on a $0\pp v_{n+1} \pp v_n$.
    $\quad$
    b. La suite $\left(v_n\right)$ est décroissante et minorée par $0$; elle converge donc.
    $\quad$
  3. a. Soit $b\in \N$. $u_n=v_n-3\times 10^{21} \ssi v_n=u_n+3\times 10^{21}$
    $\begin{align*} u_{n+1}&=v_{n+1}-3\times 10^{21} \\
    &=0,995v_n+1,5\times 10^{19}-3\times 10^{21} \\
    &=0,995v_n-2,985\times 10^{21}\\
    &=0,995\left(u_n+3\times 10^{21}\right)-2,985\times 10^{21} \\
    &=0,995u_n+2,985\times 10^{21} -2,985\times 10^{21} \\
    &=0,995u_n\end{align*}$
    La suite $\left(u_n\right)$ est donc géométrique de raison $0,995$ et de premier terme $u_0=v_0-3\times 10^{21}=3\times 10^{21}$.
    $\quad$
    b. Pour tout entier naturel $n$ on a donc $u_n=3\times 10^{21}\times 0,995^n$.
    Par conséquent
    $\begin{align*} v_n&=u_n+3\times 10^{21} \\
    &=3\times 10^{21}\times 0,995^n+3\times 10^{21}\\
    &=3\times 10^{21}\left(0,995^n+1\right)\end{align*}$
    $\quad$
    c. $0<0,995<1$ donc $\lim\limits_{n\to +\infty} 0,995^n=0$.
    Ainsi $\lim\limits_{n\to +\infty} v_n=3\times 10^{21}$.
    Cela signifie que sur le long terme il ne restera plus que $3\times 10^{21}$ noyaux atomiques.
    $\quad$
  4. On veut déterminer le plus petit entier naturel $n$ tel que :
    $\begin{align*} u_n\pp 4,5\times 10^{21} &\ssi 3\times 10^{21}\left(0,995^n+1\right)\pp 4,5\times 10^{21} \\
    &\ssi 0,995^n+1 \pp 1,5 \\
    &\ssi 0,995^n\pp 0,5 \\
    &\ssi n\ln(0,995) \pp \ln(0,5) \\
    &\ssi n\pg \dfrac{\ln(0,5)}{\ln(0,995)} \qquad \text{car }\ln(0,995)<0\end{align*}$
    Or $\dfrac{\ln(0,5)}{\ln(0,995)}\approx 138,3$.
    C’est donc au bout de $139$ jours que le nombre de noyaux de polonium sera inférieur à $4,5\times 10^{21}$.
    $\quad$
  5. a. On peut écrire $$\texttt{V = 0.995 * V + 1.5 * 10**19}$$ ou $$\texttt{V = 3 * 10**21 * (0.995**n + 1)}$$
    $\quad$
    b. $52\times 7=364$.
    Il faut donc saisir $\texttt{noyaux(364)}$ pour que la fonction renvoie les relevés quotidien du nombre de noyaux contenus dans l’échantillon de polonium pendant $52$ semaines d’étude.
    $\quad$

 

 

Ex 4

Exercice 4

  1. On considère la suite arithmétique $\left(u_n\right)$ de raison $3$ et de premier terme $u_0=7$.
    On a donc, pour tout entier naturel $n$, $u_n=7+3n$.
    $7+3n=2023\ssi 3n=2016 \ssi n=672$.
    Il y a donc $672+1=673$ termes.
    Réponse B
    $\quad$
  2. La parité des deux termes consécutifs de la liste $\texttt{L}$ est différente.
    Le premier et le dernier terme de cette liste sont impairs.
    Il y a donc $\dfrac{673-1}{2}=336$ nombres pairs.
    La probabilité de tirer un nombre pair est donc égale à $\dfrac{336}{673}$.
    Réponse C
    $\quad$
  3. La probabilité cherchée est $P(A\cap B)=\dfrac{34}{673}$.
    Réponse B
    $\quad$
  4. $\left(A,\conj{A}\right)$ est un système complet d’événements fini.
    D’après la formule des probabilités totales on a :
    $\begin{align*} P(B)&=P(A\cap B)+P\left(\conj{A}\cap B\right) \\
    &=\dfrac{168}{673}+P\left(\conj{A}\right)P_{\conj{A}}(B) \\
    &=\dfrac{34}{673}+\dfrac{673-168}{673}\times \dfrac{33}{505} \\
    &=\dfrac{67}{673}\end{align*}$
    Par conséquent
    $\begin{align*} P_B(A)&=\dfrac{P(A\cap B)}{P(B)} \\
    &=\dfrac{\dfrac{34}{673}}{~\dfrac{67}{673}~} \\
    &=\dfrac{34}{67} \end{align*}$
    Réponse D
    $\quad$
  5. La probabilité qu’un nombre tiré de cette liste ne soit pas un multiple de $4$ est égale à $\dfrac{505}{673}$.
    La probabilité qu’aucun des $10$ nombres choisis ne soit un multiple de $4$ est donc égale à $\left(\dfrac{505}{673}\right)^{10}$.
    Réponse A
    $\quad$

 

 

 

Énoncé

Télécharger (PDF, 346KB)

Si l’énoncé ne s’affiche pas directement rafraîchissez l’affichage.