Bac – Spécialité mathématiques – Métropole – sujet 2 – 21 mars 2023

Métropole – 21 mars 2023

Spécialité maths – Sujet 2 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. La probabilité que le joueur choisisse le monde A et gagne la partie est égale à :
    $\begin{align*} p(A\cap G)&=p(A)\times p_A(G) \\
    &=\dfrac{2}{5}\times \dfrac{7}{10} \\
    &=\dfrac{7}{25}\end{align*}$
    Réponse C
    $\quad$
  2. $(A,B)$ forme un système complet d’événements fini. D’après la formule des probabilités totales on a :
    $\begin{align*} &p(G)=p(A\cap G)+p(B\cap G) \\
    &\ssi \dfrac{12}{25}=\dfrac{7}{25}+p(B)p_B(G) \\
    &\ssi \dfrac{5}{25}=\dfrac{3}{5}p_B(G) \\
    &\ssi p_B(G)=\dfrac{~~\dfrac{1}{5}~~}{\dfrac{3}{5}} \\
    &\ssi p_B(G)=\dfrac{1}{3}\end{align*}$
    Réponse B
    $\quad$
  3. On appelle $X$ la variable aléatoire égale au nombre de parties gagnées.
    On répète $10$ fois de façon indépendante la même expérience de Bernoulli de paramètre $\dfrac{12}{25}$.
    $X$ suit donc la loi binomiale de paramètres $n=10$ et $p=\dfrac{12}{25}$.
    Par conséquent
    $\begin{align*} p(X=6)&=\dbinom{10}{6}\left(\dfrac{12}{25}\right)^6\times \left(\dfrac{13}{25}\right)^4 \\
    &\approx 0,188\end{align*}$
    Réponse C
    $\quad$
  4. D’après l’énoncé $p(X\pp n) \approx 0,207$.
    En faisant des essais à la calculatrice avec les différentes valeurs proposées on trouve $n=3$.
    Réponse B
    $\quad$
  5. La probabilité que le joueur gagne au moins une partie est égale à :
    $\begin{align*} p(X\pg 1)&=1-p(X=0) \\
    &=1-\left(\dfrac{13}{25}\right)^{10} \end{align*}$
    Réponse D
    $\quad$

 

Ex 2

Exercice 2

Partie A : Étude d’un premier modèle en laboratoire

  1. Chaque mois le nombre d’insecte augmente de $60\%$.
    Ainsi, pour tout $n\in \N$ on a $u_{n+1}=1,6u_n$.
    La suite $\left(u_n\right)$ est donc géométrique de raison $1,6$ et de premier terme $u_0=0,1$.
    Par conséquent, pour tout $n\in \N$, on a $u_n=0,1\times 1,6^n$.
    $\quad$
  2. $1,6>1$ et $0,1>0$. Par conséquent $\lim\limits_{n\to +\infty} u_n=+\infty$.
    $\quad$
  3. On veut résoudre :
    $\begin{align*} u_n>0,4&\ssi 0,1\times 1,6^n >0,4 \\
    &\ssi 1,6^n >4 \\
    &\ssi n\ln(1,6)>\ln(4) \\
    &\ssi n>\dfrac{\ln(4)}{\ln(1,6)} \qquad \text{car }\ln(1,6)>0\end{align*}$
    Or $\dfrac{\ln(4)}{\ln(1,6)} \approx 2,95$
    Le plus petit entier naturel $n$ à partir duquel $u_n>0,4$ est donc $3$.
    $\quad$
  4. D’après la question précédente, au bout de $3$ mois la population d’insecte a dépassé $400~000$.
    L’équilibre du milieu naturel ne sera donc pas préservé.
    $\quad$

Partie B : Étude d’un second modèle

  1. On a
    $\begin{align*} v_1&=1,6v_0-1,6v_0^2 \\
    &=0,144\end{align*}$
    Il y a donc $144~000$ insectes au bout d’un mois.
    $\quad$
  2. a.
    $\begin{align*} f(x)=x&\ssi 1,6x-1,6x^2=x \\
    &\ssi 0,6x-1,6x^2=0 \\
    &\ssi x(0,6-1,6x)=0\\
    &\ssi x=0 \text{ ou } 0,6-1,6x=0 \\
    &\ssi x=0 \text{ ou } x=0,375\end{align*}$
    $0$ et $0,375$ appartiennent bien à l’intervalle $\left[0;\dfrac{1}{2}\right]$.
    Les solutions de l’équation $f(x)=x$ sur $\left[0;\dfrac{1}{2}\right]$ sont donc $0$ et $0,375$.
    $\quad$
    b. La fonction $f$ est une fonction du second degré dont le coefficient principal est $-1,6$.
    Son maximum est atteint en $\dfrac{-1,6}{2\times (-1,6)}=\dfrac{1}{2}$.
    La fonction $f$ est donc croissante sur $\left[0;\dfrac{1}{2}\right]$.
    $\quad$
  3. a. Pour tout $n\in \N$ on pose $P(n):~0\pp v_n\pp v_{n+1} \pp \dfrac{1}{2}$.
    Initialisation : $v_0=0,1$ et $v_1=0,144$ donc $0\pp u_0\pp u_1\pp \dfrac{1}{2}$ et $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    $0\pp v_n \pp v_{n+1} \pp \dfrac{1}{2}$
    La fonction $f$ est croissante sur $\left[0;\dfrac{1}{2}\right]$.
    Donc $f(0) \pp f\left(v_n\right) \pp f\left(v_{n+1}\right) \pp f\left(\dfrac{1}{2}\right)$
    Soit $0\pp v_{n+1} \pp v_{n+2} \pp 0,4$
    Donc $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Pour tout $n\in \N$ on a $0\pp v_n\pp v_{n+1} \pp \dfrac{1}{2}$.
    $\quad$
    b. La suite $\left(v_n\right)$ est croissante et majorée ; elle converge donc vers un réel $\ell$.
    $\quad$
    c. $\ell$ est solution de l’équation $f(x)=x$.
    Par conséquent $\ell=0$ ou $\ell=0,375$ d’après la question 2.a.
    La suite $\left(v_n\right)$ est croissante et $v_0=0,1$. Donc $\ell\pg 0,1$.
    Ainsi $\ell=0,375$.
    Il y aura donc, au plus, $375~000$ insectes.
    Pour préserver l’équilibre du milieu naturel le nombre d’insectes ne doit pas dépasser $400~000$.
    L’équilibre du milieu naturel serait donc préservé.
    $\quad$
  4. a. La fonction $\texttt{seuil}$ renvoie le plus petit rang $n$ à partir duquel $v_n\pg 0,4$.
    D’après la question précédente, la suite $\left(v_n\right)$ est croissante et majorée par $\ell$. Or $\ell<0,4$.
    Si on saisit $\texttt{seuil(0.4)}$ la boucle $\texttt{while}$ ne s’arrête jamais.
    $\quad$
    b. On a $v_5\approx 0,338$ et $b_6\approx 0,358$.
    Par conséquent $\texttt{seuil(0.35)}$ renvoie $6$.
    $\quad$

 

Ex 3

Exercice 3

  1. a. Un vecteur normal au plan $\mathcal{P}_1$ est $\vec{n_1}\begin{pmatrix}2\\1\\-1\end{pmatrix}$.
    $\quad$
    b. $\vec{n_1}.\vec{n_2}=2-1-1=0$.
    Un vecteur normal au plan $\mathcal{P}_1$ est orthogonal à un vecteur normal au plan $\mathcal{P}_2$.
    Les plans $\mathcal{P}_1$ et $\mathcal{P}_2$ sont perpendiculaires.
    $\quad$
  2. a. Une équation cartésienne du plan $\mathcal{P}_2$ est de la forme $x-y+z+d=0$.
    Le point $B$ appartient à ce plan. Par conséquent $1-1+2+d=0\ssi d=-2$.
    Une équation cartésienne de $\mathcal{P}_2$ est donc $x-y+z-2=0$.
    $\quad$
    b. Montrons que la droite est incluse dans chacun des deux plans.
    Soit $t\in \R$.
    $2\times 0+(-2+t)-t+2=-2+t-t+2=0$ : $\Delta$ est incluse dans $\mathcal{P}_1$.
    $0-(-2+t)+t-2=2-t+t-2=0$ : $\Delta$ est incluse dans $\mathcal{P}_2$.
    Ainsi $\Delta$ est incluse dans deux plans perpendiculaires.
    La droite $\Delta$ est l’intersection des plans $\mathcal{P}_1$ et $\mathcal{P}_2$.
    $\quad$
  3. a. Soit $t\in \R$.
    $\vect{AM_t}\begin{pmatrix} -1\\-2+t-1\\t-1\end{pmatrix}$ soit $\vect{AM_t}\begin{pmatrix} -1\\-3+t\\t-1\end{pmatrix}$
    Par conséquent :
    $\begin{align*} AM_t&=\sqrt{(-1)^2+(-3+t)^2+(t-1)^2} \\
    &=\sqrt{1+9-6t+t^2+t^2-2t+1} \\
    &=\sqrt{2t^2-8t+11}\end{align*}$
    $\quad$
    b. La distance $AM_t$ est minimale si, et seulement si, $2t^2-8t+11$ est minimale (car la fonction racine carrée est strictement croissante sur $\R_+$).
    On considère la fonction $f$ définie sur $\R$ par $f(t)=2t^2-8t+11$.
    Il s’agit d’une fonction polynôme du second degré dont le coefficient principal est $2>0$.
    Elle admet donc un minimum en $\dfrac{-(-8)}{2\times 2}=2$.
    Or $f(2)=3$
    $H$ est le point de $\Delta$ tel que $AM_t$ est minimale.
    Ainsi $AH=\sqrt{3}$.
    $\quad$
  4. a. Une représentation paramétrique de $\mathcal{D}_1$ est $$\begin{cases} x=1+2k\\y=1+k\\z=1-k\end{cases} \qquad \forall k\in \R$$
    $\quad$
    b. On note $H’$ le point de coordonnées $\left(-\dfrac{1}{3};\dfrac{1}{3};\dfrac{5}{3}\right)$.
    En prenant $k=-\dfrac{2}{3}$ dans la représentation paramétrique de $\mathcal{D}_1$ on retrouve les coordonnées du point $H’$. Donc $H’$ appartient à $\mathcal{D}_1$.
    De plus $-\dfrac{2}{3}+\dfrac{1}{3}-\dfrac{5}{3}+2=-\dfrac{6}{3}+2=0$. Le point $H’$ appartient également à $\mathcal{P}_1$.
    Ainsi $H_1$ a pour coordonnées $\left(-\dfrac{1}{3};\dfrac{1}{3};\dfrac{5}{3}\right)$.
    $\quad$
  5. Montrons dans un premier temps que $AH_1HH_2$ est un parallélogramme.
    $\vect{AH_1}\begin{pmatrix} -\dfrac{4}{3}\\[2mm]-\dfrac{2}{3}\\[2mm] \dfrac{2}{3}\end{pmatrix}$ et $\vect{H_2H}\begin{pmatrix} -\dfrac{4}{3}\\[2mm]-\dfrac{2}{3}\\[2mm] \dfrac{2}{3}\end{pmatrix}$.
    Ainsi $\vect{AH_1}=\vect{H_2H}$ et $AH_1HH_2$ est un parallélogramme.
    Par construction $\vect{AH_1}$ est orthogonal à $\mathcal{P}_1$. Donc $\vect{AH_1}$ est orthogonal à $\vect{H_1H}$ car les points $H_1$ et $H$ appartiennent au plan $\mathcal{P}_1$.
    $AH_1HH_2$ est donc un rectangle.
    $\quad$

Ex 4

Exercice 4

  1. a.$\lim\limits_{x\to -\infty} -x=+\infty$ et $\lim\limits_{X\to +\infty} e^X=+\infty$ donc $\lim\limits_{x\to -\infty} \e^{-x}=+\infty$.
    Ainsi $\lim\limits_{x\to -\infty} 1 +\e^{-x}=+\infty$.
    Or $\lim\limits_{X\to +\infty} \ln(X)=+\infty$ donc $\lim\limits_{x\to -\infty} f(x)=+\infty$.
    $\quad$
    b.
    $\lim\limits_{x\to +\infty} -x=-\infty$ et $\lim\limits_{X\to -\infty} e^X=0$ donc $\lim\limits_{x\to +\infty} \e^{-x}=0$.
    Ainsi $\lim\limits_{x\to +\infty} 1 +\e^{-x}=1$.
    Or $\lim\limits_{X\to 1} \ln(X)=0$ donc $\lim\limits_{x\to +\infty} f(x)=0$.
    La droite d’équation $y=0$ est donc une asymptote horizontale à la courbe $\mathcal{C}$ en $+\infty$.
    $\quad$
    c. Pour tout réel $x$ on a
    $\begin{align*} f'(x)&=\dfrac{-\e^{-x}}{1+\e^{-x}} \\
    &=\dfrac{\e^x}{\e^x}\times \dfrac{-\e^{-x}}{1+\e^{-x}} \\
    &=\dfrac{-1}{\e^x+1}\end{align*}$
    $\quad$
    d. La fonction exponentielle est strictement positive sur $\R$, par conséquent, pour tout $x\in \R$ on a $f'(x)<0$.
    On obtient donc le tableau de variations suivant :
    $\quad$

    $\quad$
  2. a. Une équation de $T_0$ est de la forme $y=f'(0)x+f(0)$
    Or $f'(0)=-\dfrac{1}{2}$ et $f(0)=\ln(2)$
    Une équation de $T_0$ est donc $y=-\dfrac{1}{2}x+\ln(2)$.
    $\quad$
    b. La fonction $f’$ est dérivable sur $\R$ en tant que quotient de fonctions dérivables dont le dénominateur ne s’annule pas.
    Pour tout réel $x$ on a $f\dsec(x)=\dfrac{\e^x}{\left(1+\e^x\right)^2}$.
    Par conséquent, pour tout réel $x$, on a $f\dsec(x)>0$.
    La fonction $f$ est convexe sur $\R$.
    $\quad$
    c. La fonction $f$ est convexe sur $\R$. La courbe représentative de la fonction $f$ est donc au-dessus de toutes ses tangentes, en particulier au-dessus de $T_0$.
    Ainsi, pour tout réel $x$, on a $f(x)\pg -\dfrac{1}{2}x+\ln(2)$.
    $\quad$
  3. a. Soit $x\in \R$
    $\begin{align*} f(x)-f(-x)&=\ln\left(1+\e^{-x}\right)-\ln\left(1+\e^{x}\right) \\
    &=\ln\left(\dfrac{1+\e^{-x}}{1+\e^x}\right) \\
    &=\ln\left(\e^{-x}\times \dfrac{\e^x+1}{1+\e^x}\right) \\
    &=\ln\left(\e^{-x}\right) \\
    &=-x\end{align*}$
    $\quad$
    b. Le coefficient directeur de la droite $\left(M_aN_a\right)$ est
    $\begin{align*} m&=\dfrac{f(a)-f(-a)}{a-(-a)} \\
    &=\dfrac{-a}{2a} \\
    &=-\dfrac{1}{2} \\
    &=f'(0)\end{align*}$
    Par conséquent les droites $T_0$ et $\left(M_aN_a\right)$ sont parallèles.
    $\quad$

Énoncé

Le candidat doit traiter les quatre exercices proposés.

Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse, qu’il aura développée.

La qualité de la rédaction, la clarté et la précision des raisonnements seront prises en compte dans l’appréciation de la copie. Les traces de recherche, même incomplètes ou infructueuses, seront valorisées.

Exercice 1     5 points

Cet exercice est un questionnaire à choix multiple.
Pour chaque question, une seule des quatre réponses proposées est exacte. Le candidat indiquera sur sa copie le numéro de la question et la réponse choisie. Aucune justification n’est demandée.
Aucun point n’est enlevé en l’absence de réponse ou en cas de réponse inexacte.

Un jeu vidéo possède une vaste communauté de joueurs en ligne. Avant de débuter une partie, le joueur doit choisir entre deux « mondes » : soit le monde A, soit le monde B.
On choisit au hasard un individu dans la communauté des joueurs.
Lorsqu’il joue une partie, on admet que :

  • la probabilité que le joueur choisisse le monde A est égale à $\dfrac{2}{5}$ ;
  • si le joueur choisit le monde A, la probabilité qu’il gagne la partie est de $\dfrac{7}{10}$ ;
  • la probabilité que le joueur gagne la partie est de $\dfrac{12}{25}$.

On considère les évènements suivants :

  • $A$ : « Le joueur choisit le monde $\mathrm{A}$ » ;
  • $B$ : « Le joueur choisit le monde B » ;
  • $G$ : « Le joueur gagne la partie ».
  1. La probabilité que le joueur choisisse le monde A et gagne la partie est égale à :
    a. $\dfrac{7}{10}$
    b. $\dfrac{3}{25}$
    c. $\dfrac{7}{25}$
    d. $\dfrac{24}{125}$
    $\quad$
  2. La probabilité $P_B(G)$ de l’événement $G$ sachant que $B$ est réalisé est égale à :
    a. $\dfrac{1}{5}$
    b. $\dfrac{1}{3}$
    c. $\dfrac{7}{15}$
    d. $\dfrac{5}{12}$
    $\quad$

Dans la suite de l’exercice, un joueur effectue $10$ parties successives. On assimile cette situation à un tirage aléatoire avec remise. On rappelle que la probabilité de gagner une partie est de $\dfrac{12}{25}$.

  1. La probabilité, arrondie au millième, que le joueur gagne exactement $6$ parties est égale à:
    a. $0,859$
    b. $0,671$
    c. $0,188$
    d. $0,187$
    $\quad$
  2. On considère un entier naturel $n$ pour lequel la probabilité, arrondie au millième, que le joueur gagne au plus $n$ parties est de $0,207$. Alors :
    a. $n=2$
    b. $n=3$
    c. $n=4$
    d. $n=5$
    $\quad$
  3. La probabilité que le joueur gagne au moins une partie est égale à :
    a. $1-\left(\dfrac{12}{25}\right)^{10}$
    b. $\left(\dfrac{13}{25}\right)^{10}$
    c. $\left(\dfrac{12}{25}\right)^{10}$
    d. $1-\left(\dfrac{13}{25}\right)^{10}$
    $\quad$

$\quad$

Exercice 2     5 points

Des biologistes étudient l’évolution d’une population d’insectes dans un jardin botanique. Au début de l’étude la population est de $100~000$ insectes.
Pour préserver l’équilibre du milieu naturel le nombre d’insectes ne doit pas dépasser $400~000$ .

Partie A : Étude d’un premier modèle en laboratoire

L’observation de l’évolution de ces populations d’insectes en laboratoire, en l’absence de tout prédateur, montre que le nombre d’insectes augmente de $60 \%$ chaque mois.
En tenant compte de cette observation, les biologistes modélisent l’évolution de la population d’insectes à l’aide d’une suite $\left(u_n\right)$ où, pour tout entier naturel $n$, $u_n$ modélise le nombre d’insectes, exprimé en millions, au bout de $n$ mois. On a donc $u_0=0,1$.

  1. Justifier que pour tout entier naturel $n$: $u_n=0,1 \times 1,6^n$.
    $\quad$
  2. Déterminer la limite de la suite $\left(u_n\right)$.
    $\quad$
  3. En résolvant une inéquation, déterminer le plus petit entier naturel $n$ à partir duquel $u_n>0,4$.
    $\quad$
  4. Selon ce modèle, l’équilibre du milieu naturel serait-il préservé ? Justifier la réponse.
    $\quad$

Partie B : Étude d’un second modèle

En tenant compte des contraintes du milieu naturel dans lequel évoluent les insectes, les biologistes choisissent une nouvelle modélisation.
Ils modélisent le nombre d’insectes à l’aide de la suite $\left(v_n\right)$, définie par : $v_0=0,1$ et, pour tout entier naturel $n$, $v_{n+1}=1,6 v_n-1,6 v_n^2$, où, pour tout entier naturel $n$, $v_n$ est le nombre d’insectes, exprimé en millions, au bout de $n$ mois.

  1. Déterminer le nombre d’insectes au bout d’un mois.
    $\quad$
  2. On considère la fonction $f$ définie sur l’intervalle $\left[0 ; \dfrac{1}{2}\right]$ par $f(x)=1,6 x-1,6 x^2$.
    a. Résoudre l’équation $f(x)=x$.
    $\quad$
    b. Montrer que la fonction $f$ est croissante sur l’intervalle $\left[0 ; \dfrac{1}{2}\right]$.
    $\quad$
  3. a. Montrer par récurrence que, pour tout entier naturel $n, 0 \pp v_n \pp v_{n+1} \pp \dfrac{1}{2}$.
    $\quad$
    b. Montrer que la suite $\left(v_n\right)$ est convergente.
    $\quad$
    On note $\ell$ la valeur de sa limite. On admet que $\ell$ est solution de l’équation $f(x)=x$.
    $\quad$
    c. Déterminer la valeur de $\ell$. Selon ce modèle, l’équilibre du milieu naturel sera-t-il préservé ? Justifier la réponse.
    $\quad$
  4. On donne ci-dessous la fonction $\text{seuil}$, écrite en langage Python.
    $$\begin{array}{|l|}
    \hline
    \text{def seuil(a) :} \\
    \quad \text{v = 0.1} \\
    \quad \text{n = 0} \\
    \qquad \text{while v < a :} \\
    \qquad \text{v = 1.6 * v – 1.6 * v * v} \\
    \qquad \text{n = n + 1} \\
    \quad \text{return n} \\
    \hline
    \end{array}$$
    a. Qu’observe-t-on si on saisit $\text{seuil(0.4)}$ ?
    $\quad$
    b. Déterminer la valeur renvoyée par la saisie de $\text{seuil(0.35)}$. Interpréter cette valeur dans le contexte de l’exercice.
    $\quad$

$\quad$

Exercice 3     5 points

Dans l’espace rapporté à un repère orthonormé $\Oijk$, on considère :

  • le plan $\mathcal{P}_1$ dont une équation cartésienne est $2 x+y-z+2=0$,
  • le plan $\mathcal{P}_2$ passant par le point $B(1 ; 1 ; 2)$ et dont un vecteur normal est $\vect{n_2}\begin{pmatrix}1 \\ -1 \\ 1\end{pmatrix}$.
  1. a. Donner les coordonnées d’un vecteur $\vect{n_1}$ normal au plan $\mathcal{P}_1$.
    $\quad$
    b. On rappelle que deux plans sont perpendiculaires si un vecteur normal à l’un des plans est orthogonal à un vecteur normal à l’autre plan.
    Montrer que les plans $\mathcal{P}_1$ et $\mathcal{P}_2$ sont perpendiculaires.
    $\quad$
  2. a. Déterminer une équation cartésienne du plan $\mathcal{P}_2$.
    $\quad$
    b. On note $\Delta$ la droite dont une représentation paramétrique est : $\begin{cases}x=0 \\ y=-2+t,\quad t \in \mathbb{R} \text {. } \\ z=t\end{cases}$ Montrer que la droite $\Delta$ est l’intersection des plans $\mathcal{P}_1$ et $\mathcal{P}_2$.
    $\quad$

On considère le point $A(1 ; 1 ; 1)$ et on admet que le point $A$ n’appartient ni à $\mathcal{P}_1$ ni à $\mathcal{P}_2$.
On note $H$ le projeté orthogonal du point $A$ sur la droite $\Delta$.

  1. On rappelle que, d’après la question 2.b, la droite $\Delta$ est l’ensemble des points $M_t$ de coordonnées $(0 ;-2+t ; t)$, où $t$ désigne un nombre réel quelconque.
    a. Montrer que, pour tout réel $t, A M_t=\sqrt{2 t^2-8 t+11}$.
    $\quad$
    b. En déduire que $AH=\sqrt{3}$.
    $\quad$
  2. On note $\mathcal{D}_1$ la droite orthogonale au plan $\mathcal{P}_1$ passant par le point $A$ et $H_1$ le projeté orthogonal du point $A$ sur le plan $\mathcal{P}_1$.
    a. Déterminer une représentation paramétrique de la droite $\mathcal{D}_1$.
    $\quad$
    b. En déduire que le point $H_1$ a pour coordonnées $\left(-\dfrac{1}{3};\dfrac{1}{3};\dfrac{5}{3}\right)$.
    $\quad$
  3. Soit $H_2$ le projeté orthogonal de $A$ sur le plan $\mathcal{P}_2$.
    On admet que $H_2$ a pour coordonnées $\left(\dfrac{4}{3};\dfrac{2}{3};\dfrac{4}{3}\right)$. et que $H$ a pour coordonnées $(0;0;2)$.
    Sur le schéma ci-dessous, les plans $\mathcal{P}_1$ et $\mathcal{P}_2$ sont représentés, ainsi que les points $A$, $H_1$, $H_2$, $H$.
    Montrer que $AH_1HH_2$ est un rectangle.
    $\quad$

    $\quad$

$\quad$

Exercice 4     5 points

On considère la fonction $f$ définie sur $\R$ par $f(x) = \ln \left(1 + \e^{-x}\right)$, où $\ln$ désigne la fonction logarithme népérien.

On note $\mathcal{C}$ sa courbe représentative dans un repère orthonormé $\Oij$.
La courbe $\mathcal{C}$ est tracée ci-dessous.

  1. a. Déterminer la limite de la fonction $f$ en $-\infty$.
    $\quad$
    b. Déterminer la limite de la fonction $f$ en $+\infty$. Interpréter graphiquement ce résultat.
    $\quad$
    c. On admet que la fonction $f$ est dérivable sur $\R$ et on note $f’$ sa fonction dérivée.
    Calculer $f'(x)$ puis montrer que, pour tout nombre réel $x$, $f'(x)=\dfrac{-1}{1+\e^x}$.
    $\quad$
    d. Dresser le tableau de variations complet de la fonction $f$ sur $\R$.
    $\quad$
  2. On note $T_0$ la tangente à la courbe $\mathcal{C}$ en son point d’abscisse $0$.
    a. Déterminer une équation de la tangente $T_0$.
    $\quad$
    b. Montrer que la fonction $f$ est convexe sur $\R$.
    $\quad$
    c. En déduire que, pour tout nombre réel $x$, on a : $f(x)\pg -\dfrac{1}{2}x+\ln(2)$.
    $\quad$
  3. Pour tout nombre réel $a$ différent de $0$, on note $M_a$ et $N_a$ les points de la courbe $\mathcal{C}$ d’abscisses respectives $-a$ et $a$. On a donc : $M_a\left(-a;f(-a)\right)$ et $N_a\left(a;f(a)\right)$.
    a. Montrer que, pour tout nombre réel $x$, on a : $f(x)-f(-x)=-x$.
    $\quad$
    b. En déduire que les droites $T_0$ et $\left(M_aN_a\right)$ sont parallèles.
    $\quad$

$\quad$