Bac – Spécialité mathématiques – Métropole – sujet 2 – 21 mars 2023

Métropole – 21 mars 2023

Spécialité maths – Sujet 2 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. La probabilité que le joueur choisisse le monde A et gagne la partie est égale à :
    $\begin{align*} p(A\cap G)&=p(A)\times p_A(G) \\
    &=\dfrac{2}{5}\times \dfrac{7}{10} \\
    &=\dfrac{7}{25}\end{align*}$
    Réponse C
    $\quad$
  2. $(A,B)$ forme un système complet d’événements fini. D’après la formule des probabilités totales on a :
    $\begin{align*} &p(G)=p(A\cap G)+p(B\cap G) \\
    &\ssi \dfrac{12}{25}=\dfrac{7}{25}+p(B)p_B(G) \\
    &\ssi \dfrac{5}{25}=\dfrac{3}{5}p_B(G) \\
    &\ssi p_B(G)=\dfrac{~~\dfrac{1}{5}~~}{\dfrac{3}{5}} \\
    &\ssi p_B(G)=\dfrac{1}{3}\end{align*}$
    Réponse B
    $\quad$
  3. On appelle $X$ la variable aléatoire égale au nombre de parties gagnées.
    On répète $10$ fois de façon indépendante la même expérience de Bernoulli de paramètre $\dfrac{12}{25}$.
    $X$ suit donc la loi binomiale de paramètres $n=10$ et $p=\dfrac{12}{25}$.
    Par conséquent
    $\begin{align*} p(X=6)&=\dbinom{10}{6}\left(\dfrac{12}{25}\right)^6\times \left(\dfrac{13}{25}\right)^4 \\
    &\approx 0,188\end{align*}$
    Réponse C
    $\quad$
  4. D’après l’énoncé $p(X\pp n) \approx 0,207$.
    En faisant des essais à la calculatrice avec les différentes valeurs proposées on trouve $n=3$.
    Réponse B
    $\quad$
  5. La probabilité que le joueur gagne au moins une partie est égale à :
    $\begin{align*} p(X\pg 1)&=1-p(X=0) \\
    &=1-\left(\dfrac{13}{25}\right)^{10} \end{align*}$
    Réponse D
    $\quad$

 

Ex 2

Exercice 2

Partie A : Étude d’un premier modèle en laboratoire

  1. Chaque mois le nombre d’insecte augmente de $60\%$.
    Ainsi, pour tout $n\in \N$ on a $u_{n+1}=1,6u_n$.
    La suite $\left(u_n\right)$ est donc géométrique de raison $1,6$ et de premier terme $u_0=0,1$.
    Par conséquent, pour tout $n\in \N$, on a $u_n=0,1\times 1,6^n$.
    $\quad$
  2. $1,6>1$ et $0,1>0$. Par conséquent $\lim\limits_{n\to +\infty} u_n=+\infty$.
    $\quad$
  3. On veut résoudre :
    $\begin{align*} u_n>0,4&\ssi 0,1\times 1,6^n >0,4 \\
    &\ssi 1,6^n >4 \\
    &\ssi n\ln(1,6)>\ln(4) \\
    &\ssi n>\dfrac{\ln(4)}{\ln(1,6)} \qquad \text{car }\ln(1,6)>0\end{align*}$
    Or $\dfrac{\ln(4)}{\ln(1,6)} \approx 2,95$
    Le plus petit entier naturel $n$ à partir duquel $u_n>0,4$ est donc $3$.
    $\quad$
  4. D’après la question précédente, au bout de $3$ mois la population d’insecte a dépassé $400~000$.
    L’équilibre du milieu naturel ne sera donc pas préservé.
    $\quad$

Partie B : Étude d’un second modèle

  1. On a
    $\begin{align*} v_1&=1,6v_0-1,6v_0^2 \\
    &=0,144\end{align*}$
    Il y a donc $144~000$ insectes au bout d’un mois.
    $\quad$
  2. a.
    $\begin{align*} f(x)=x&\ssi 1,6x-1,6x^2=x \\
    &\ssi 0,6x-1,6x^2=0 \\
    &\ssi x(0,6-1,6x)=0\\
    &\ssi x=0 \text{ ou } 0,6-1,6x=0 \\
    &\ssi x=0 \text{ ou } x=0,375\end{align*}$
    $0$ et $0,375$ appartiennent bien à l’intervalle $\left[0;\dfrac{1}{2}\right]$.
    Les solutions de l’équation $f(x)=x$ sur $\left[0;\dfrac{1}{2}\right]$ sont donc $0$ et $0,375$.
    $\quad$
    b. La fonction $f$ est une fonction du second degré dont le coefficient principal est $1,6$.
    Son maximum est atteint en $\dfrac{-1,6}{2\times (-1,6)}=\dfrac{1}{2}$.
    La fonction $f$ est donc croissante sur $\left[0;\dfrac{1}{2}\right]$.
    $\quad$
  3. a. Pour tout $n\in \N$ on pose $P(n):~0\pp v_n\pp v_{n+1} \pp \dfrac{1}{2}$.
    Initialisation : $v_0=0,1$ et $v_1=0,144$ donc $0\pp u_0\pp u_1\pp \dfrac{1}{2}$ et $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    $0\pp v_n \pp v_{n+1} \pp \dfrac{1}{2}$
    La fonction $f$ est croissante sur $\left[0;\dfrac{1}{2}\right]$.
    Donc $f(0) \pp f\left(v_n\right) \pp f\left(v_{n+1}\right) \pp f\left(\dfrac{1}{2}\right)$
    Soit $0\pp v_{n+1} \pp v_{n+2} \pp 0,4$
    Donc $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Pour tout $n\in \N$ on a $0\pp v_n\pp v_{n+1} \pp \dfrac{1}{2}$.
    $\quad$
    b. La suite $\left(v_n\right)$ est croissante et majorée ; elle converge donc vers un réel $\ell$.
    $\quad$
    c. $\ell$ est solution de l’équation $f(x)=x$.
    Par conséquent $\ell=0$ ou $\ell=0,375$ d’après la question 2.a.
    La suite $\left(v_n\right)$ est croissante et $v_0=0,1$. Donc $\ell\pg 0,1$.
    Ainsi $\ell=0,375$.
    $\quad$
  4. a. La fonction $\texttt{seuil}$ renvoie le plus petit rang $n$ à partir duquel $v_n\pg 0,4$.
    D’après la question précédente, la suite $\left(v_n\right)$ est croissante et majorée par $\ell$. Or $\ell<0,4$.
    Si on saisit $\texttt{seuil(0.4)}$ la boucle $\texttt{while}$ ne s’arrête jamais.
    $\quad$
    b. On a $v_5\approx 0,338$ et $b_6\approx 0,358$.
    Par conséquent $\texttt{seuil(0.35)}$ renvoie $6$.
    $\quad$

 

Ex 3

Exercice 3

  1. a. Un vecteur normal au plan $\mathcal{P}_1$ est $\vec{n_1}\begin{pmatrix}2\\1\\-1\end{pmatrix}$.
    $\quad$
    b. $\vec{n_1}.\vec{n_2}=2-1-1=0$.
    Un vecteur normal au plan $\mathcal{P}_1$ est orthogonal à un vecteur normal au plan $\mathcal{P}_2$.
    Les plans $\mathcal{P}_1$ et $\mathcal{P}_2$ sont perpendiculaires.
    $\quad$
  2. a. Une équation cartésienne du plan $\mathcal{P}_2$ est de la forme $x-y+z+d=0$.
    Le point $B$ appartient à ce plan. Par conséquent $1-1+2+d=0\ssi d=-2$.
    Une équation cartésienne de $\mathcal{P}_2$ est donc $x-y+z-2=0$.
    $\quad$
    b. Montrons que la droite est incluse dans chacun des deux plans.
    Soit $t\in \R$.
    $2\times 0+(-2+t)-t+2=-2+t-t+2=0$ : $\Delta$ est incluse dans $\mathcal{P}_1$.
    $0-(-2+t)+t-2=2-t+t-2=0$ : $\Delta$ est incluse dans $\mathcal{P}_2$.
    Ainsi $\Delta$ est incluse dans deux plans perpendiculaires.
    La droite $\Delta$ est l’intersection des plans $\mathcal{P}_1$ et $\mathcal{P}_2$.
    $\quad$
  3. a. Soit $t\in \R$.
    $\vect{AM_t}\begin{pmatrix} -1\\-2+t-1\\t-1\end{pmatrix}$ soit $\vect{AM_t}\begin{pmatrix} -1\\-3+t\\t-1\end{pmatrix}$
    Par conséquent :
    $\begin{align*} AM_t&=\sqrt{(-1)^2+(-3+t)^2+(t-1)^2} \\
    &=\sqrt{1+9-6t+t^2+t^2-2t+1} \\
    &=\sqrt{2t^2-8t+11}\end{align*}$
    $\quad$
    b. La distance $AM_t$ est minimale si, et seulement si, $2t^2-8t+11$ est minimale (car la fonction racine carrée est strictement croissante sur $\R_+$).
    On considère la fonction $f$ définie sur $\R$ par $f(t)=2t^2-8t+11$.
    Il s’agit d’une fonction polynôme du second degré dont le coefficient principal est $2>0$.
    Elle admet donc un minimum en $\dfrac{-(-8)}{2\times 2}=2$.
    Or $f(2)=3$
    $H$ est le point de $\Delta$ tel que $AM_t$ est minimale.
    Ainsi $AH=\sqrt{3}$.
    $\quad$
  4. a. Une représentation paramétrique de $\mathcal{D}_1$ est $$\begin{cases} x=1+2k\\y=1+k\\z=1-k\end{cases} \qquad \forall k\in \R$$
    $\quad$
    b. On note $H’$ le point de coordonnées $\left(-\dfrac{1}{3};\dfrac{1}{3};\dfrac{5}{3}\right)$.
    En prenant $k=-\dfrac{2}{3}$ dans la représentation paramétrique de $\mathcal{D}_1$ on retrouve les coordonnées du point $H’$. Donc $H’$ appartient à $\mathcal{D}_1$.
    De plus $-\dfrac{2}{3}+\dfrac{1}{3}-\dfrac{5}{3}+2=-\dfrac{6}{3}+2=0$. Le point $H’$ appartient également à $\mathcal{P}_1$.
    Ainsi $H_1$ a pour coordonnées $\left(-\dfrac{1}{3};\dfrac{1}{3};\dfrac{5}{3}\right)$.
    $\quad$
  5. Montrons dans un premier temps que $AH_1HH_2$ est un parallélogramme.
    $\vect{AH_1}\begin{pmatrix} -\dfrac{4}{3}\\[2mm]-\dfrac{2}{3}\\[2mm] \dfrac{2}{3}\end{pmatrix}$ et $\vect{H_2H}\begin{pmatrix} -\dfrac{4}{3}\\[2mm]-\dfrac{2}{3}\\[2mm] \dfrac{2}{3}\end{pmatrix}$.
    Ainsi $\vect{AH_1}=\vect{H_2H}$ et $AH_1HH_2$ est un parallélogramme.
    Par construction $\vect{AH_1}$ est orthogonal à $\mathcal{P}_1$. Donc $\vect{AH_1}$ est orthogonal à $\vect{H_1H}$ car les points $H_1$ et $H$ appartiennent au plan $\mathcal{P}_1$.
    $AH_1HH_2$ est donc un rectangle.
    $\quad$

Ex 4

Exercice 4

  1. a.$\lim\limits_{x\to -\infty} -x=+\infty$ et $\lim\limits_{X\to +\infty} e^X=+\infty$ donc $\lim\limits_{x\to -\infty} \e^{-x}=+\infty$.
    Ainsi $\lim\limits_{x\to -\infty} 1 +\e^{-x}=+\infty$.
    Or $\lim\limits_{X\to +\infty} \ln(X)=+\infty$ donc $\lim\limits_{x\to -\infty} f(x)=+\infty$.
    $\quad$
    b.
    $\lim\limits_{x\to +\infty} -x=-\infty$ et $\lim\limits_{X\to -\infty} e^X=0$ donc $\lim\limits_{x\to +\infty} \e^{-x}=0$.
    Ainsi $\lim\limits_{x\to +\infty} 1 +\e^{-x}=1$.
    Or $\lim\limits_{X\to 1} \ln(X)=0$ donc $\lim\limits_{x\to +\infty} f(x)=0$.
    $\quad$
    c. Pour tout réel $x$ on a
    $\begin{align*} f'(x)&=\dfrac{-\e^{-x}}{1+\e^{-x}} \\
    &=\dfrac{\e^x}{\e^x}\times \dfrac{-\e^{-x}}{1+\e^{-x}} \\
    &=\dfrac{-1}{\e^x+1}\end{align*}$
    $\quad$
    d. La fonction exponentielle est strictement positive sur $\R$, par conséquent, pour tout $x\in \R$ on a $f'(x)<0$.
    On obtient donc le tableau de variations suivant :
    $\quad$

    $\quad$
  2. a. Une équation de $T_0$ est de la forme $y=f'(0)x+f(0)$
    Or $f'(0)=-\dfrac{1}{2}$ et $f(0)=\ln(2)$
    Une équation de $T_0$ est donc $y=-\dfrac{1}{2}x+\ln(2)$.
    $\quad$
    b. La onction $f’$ est dérivable sur $\R$ en tant que quotient de fonctions dérivables dont le dénominateur ne s’annule pas.
    Pour tout réel $x$ on a $f\dsec(x)=\dfrac{\e^x}{\left(1+\e^x\right)^2}$.
    Par conséquent, pour tout réel $x$, on a $f\dsec(x)>0$.
    La fonction $f$ est convexe sur $\R$.
    $\quad$
    c. La fonction $f$ est convexe sur $\R$. La courbe représentative de la fonction $f$ est donc au-dessus de toutes ses tangentes, en particulier au-dessus de $T_0$.
    Ainsi, pour tout réel $x$, on a $f(x)\pg -\dfrac{1}{2}x+\ln(2)$.
    $\quad$
  3. a. Soit $x\in \R$
    $\begin{align*} f(x)-f(-x)&=\ln\left(1+\e^{-x}\right)-\ln\left(1+\e^{x}\right) \\
    &=\ln\left(\dfrac{1+\e^{-x}}{1+\e^x}\right) \\
    &=\ln\left(\e^{-x}\times \dfrac{\e^x+1}{1+\e^x}\right) \\
    &=\ln\left(\e^{-x}\right) \\
    &=-x\end{align*}$
    $\quad$
    b. Le coefficient directeur de la droite $\left(M_aN_a\right)$ est
    $\begin{align*} m&=\dfrac{f(a)-f(-a)}{a-(-a)} \\
    &=\dfrac{-a}{2a} \\
    &=-\dfrac{1}{2} \\
    &=f'(0)\end{align*}$
    Par conséquent les droites $T_0$ et $\left(M_aN_a\right)$ sont parallèles.
    $\quad$

Énoncé

Télécharger (PDF, 245KB)

Si l’énoncé ne s’affiche pas directement rafraîchissez l’affichage.