Bac – Spécialité mathématiques – Polynésie – sujet 1 – 13 mars 2023

Polynésie – 13 mars 2023

Spécialité maths – Sujet 1 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

Partie A

  1. On veut calculer:
    $\begin{align*} p(J\cap T)&=p(J)p_J(T) \\
    &=0,21\times (1-0,68)\\
    &=0,067~2\end{align*}$
    La probabilité que la personne interrogée ait moins de 35 ans et utilise son vélo dans ses déplacements professionnels est égale à $0,067~2$.
    $\quad$
  2. $\left(J,\conj{J}\right)$ forme un système complet d’événements fini. D’après la formule des probabilités totales :
    $\begin{align*} p(T)&=p(J\cap T)+p\left(\conj{J}\cap T\right) \\
    &=0,067~2+p\left(\conj{J}\right)p_{\conj{J}}(T) \\
    &=0,067~2+(1-0,21)\times 0,2 \\
    &=0,225~2\end{align*}$
    $\quad$
  3. On veut calculer :
    $\begin{align*} p_T(J)&=\dfrac{p(T\cap J)}{p(T)} \\
    &=\dfrac{0,067~2}{0,225~2} \\
    &\approx 0,298\end{align*}$
    La probabilité que l’habitant qui utilise son vélo dans ses déplacements professionnels ait moins de $35$ ans est environ égale à $0,30$.
    $\quad$

Partie B

  1. On répète de façon indépendante $120$ fois la même expérience de Bernoulli de paramètre $0,3$.
    $X$ suit donc la loi binomiale de paramètres $n=120$ et $p=0,3$.
    $\quad$
  2. On veut calculer $p(X\pg 50)= 1- p(X\pp 49) \approx 0,004$.
    La probabilité qu’au moins $50$ utilisateurs de vélo parmi les $120$ aient moins de 35 ans est environ égale à $0,004$.
    $\quad$

 

Ex 2

Exercice 2

  1. a. $\vec{v}$ a pour coordonnées $\begin{pmatrix}2\\1\\0\end{pmatrix}$.
    $\quad$
    b. $\vec{u}$ et $\vec{v}$ ne sont pas colinéaires car aucune des composantes de $\vec{u}$ n’est nulle alors que la troisième de $\vec{v}$ l’est.
    Par conséquent $d_1$ et $d_2$ ne sont pas parallèles.
    $\quad$
    c. Une représentation paramétrique de la droite $d_1$ est $\begin{cases} x=2+t\\y=3-t\\z=t\end{cases} \quad \forall t\in \R$.
    Résolvons le système :
    $\begin{align*} &\ssi \begin{cases} x=2+t\\y=3-t\\z=t\\x=2k-3\\y=k\\z=5\end{cases} \\
    &\ssi \begin{cases} x=2+t\\y=3-t\\z=t\\2+t=2k-3\\3-t=k\\t=5\end{cases} \\
    &\ssi \begin{cases} x=2+t\\y=3-t\\z=t\\t=5\\7=2k-3\\k=-2\end{cases} \\
    &\ssi \begin{cases} x=2+t\\y=3-t\\z=t\\t=5\\k=5\\k=-2\end{cases} \end{align*}$
    Les deux dernières lignes du système ne sont pas compatibles.
    Les droites $d_1$ et $d_2$ ne sont donc pas sécantes.
    $\quad$
    d. Les droites $d_1$ et $d_2$ ne sont ni sécantes, ni parallèles. Elles sont par conséquent non coplanaires.
    $\quad$
  2. a. D’une part $\vec{w}.\vec{u}=-1-2+3=0$
    D’autre part $\vec{w}.\vec{v}=-2+2+0=0$
    Le vecteur $\vec{w}$ est donc orthogonal aux vecteurs $\vec{u}$ et $\vec{v}$.
    $\quad$
    b. Soit $M'(3;3;5)$.
    $5\times 3+4\times 3-5-22=15+12-5-22=0$. $M’$ appartient au plan $P$.
    Prenons $k=3$ dans la représentation paramétrique de $d_2$.
    On obtient $x=6-3=3$, $y=3$ et $z=5$. $M’$ appartient à $d_2$.
    Les droite $d_1$ et $d_2$ ne sont pas coplanaires. Par conséquent la droite $d_2$ n’est pas incluse dans le plan $P$.
    Ainsi l’intersection de la droite $d_2$ et du plan $P$ est le point $M(3;3;5)$.
    $\quad$
  3. a. Un vecteur directeur de $\Delta$ est $\vec{w}\begin{pmatrix}-1\\2\\3\end{pmatrix}$.
    D’après la question 2.a., les droites $\Delta$ et $d_1$ sont orthogonales.
    Montrons qu’elles sont sécantes.
    $\begin{align*} \begin{cases} x=-r+3\\y=2r+3\\z=3r+5\\x=2+t\\y=3-t\\z=t\end{cases}&\ssi \begin{cases} x=-r+3\\y=2r+3\\z=3r+5\\-r+3=2+t\\2r+3=3-t\\3r+5=t\end{cases} \\
    &\ssi \begin{cases} x=-r+3\\y=2r+3\\z=3r+5\\t=3r+5\\-r+3=2+3r+5\\2r+3=3-3r-5\end{cases} \\
    &\ssi \begin{cases} x=-r+3\\y=2r+3\\z=3r+5\\t=3r+5\\-4r=4\\5r=-5\end{cases} \\
    &\ssi \begin{cases} x=-r+3\\y=2r+3\\z=3r+5\\r=-1\\t=2\end{cases} \\
    &\ssi \begin{cases} r=-1\\t=2\\x=4\\y=1\\z=2\end{cases}\end{align*}$.
    Les droites $\Delta$ et $d_1$ sont perpendiculaires en $L(4;1;2)$.
    $\quad$
    b. La droite $\Delta$ est orthogonale à la droite $d_2$ d’après la question 2.a.
    Prenons $k=3$ dans la représentation paramétrique de $d_2$.
    On obtient $x=3$, $y=3$ et $z=5$. Le point de coordonnées $(3;3;5)$ appartient donc à la fois à la droite $d_2$ et, par construction, à la droite $\Delta$.
    Ainsi $\Delta$ et $d_2$ sont perpendiculaires au point de coordonnées $(3;3;5)$.
    $\quad$
    La droite $\Delta$ est donc perpendiculaires au deux droites $d_1$ et $d_2$.
    $\quad$

Ex 3

Exercice 3

  1. La fonction $f$ est dérivable deux fois sur $\R$ en tant que somme de fonctions deux fois dérivables sur $\R$.
    Pour tout réel $x$ on a
    $f'(x)=\e^x-1$ et $f\dsec(x)=\e^x>0$.
    La fonction $f$ est convexe sur $\R$.
    Affirmation 1 vraie
    $\quad$
  2. Un produit de facteurs est nul si, et seulement si, un de ses facteurs au moins est nul.
    $\left(2\e^x-6\right)\left(\e^x+2\right)=0 \ssi 2\e^x-6=0$ ou $\e^x+2=0$.
    $2\e^x-6=0 \ssi 2\e^x=6\ssi \e^x=3\ssi x=\ln(3)$.
    La fonction exponentielle est strictement positive sur $\R$ donc $\e^x+2>2>0$.
    Ainsi l’équation $\left(2\e^x-6\right)\left(\e^x+2\right)=0$ possède une unique solution dans $\R$ qui est $\ln(3)$.
    Affirmation 2 vraie
    $\quad$
  3. Pour tout $x>0$ on a
    $\begin{align*} \dfrac{\e^{2x}-1}{\e^x-x}&=\dfrac{\e^{2x}\left(1-\e^{-2x}\right)}{\e^x\left(1-x\e^{-x}\right)} \\
    &=\e^x\times \dfrac{1-\e^{-2x}}{1-x\e^{-x}}\end{align*}$
    Or $\lim\limits_{x\to +\infty} \e^{-2x}=0$, $\lim\limits_{x\to +\infty} \e^x=+\infty$ et par croissances comparées $\lim\limits_{x\to +\infty} x\e^{-x}=0$.
    Donc $\lim\limits_{x\to +\infty} \dfrac{\e^{2x}-1}{\e^x-x}=+\infty$.
    Affirmation 3 fausse
    $\quad$
  4. La fonction $F$ est dérivable sur $\R$ en tant que somme et produit de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a :
    $\begin{align*} F'(x)&=2\e^{3x}+3(2x+1)\e^{3x} \\
    &=(2+6x+3)\e^{3x} \\
    &=(6x+5)\e^{3x} \\
    &=f(x)\end{align*}$
    $F$ est une primitive de $f$ sur $\R$.
    $F(0)=1+4=5$.
    Affirmation 4 vraie
    $\quad$
  5. La fonction $\texttt{mystere}$ renvoie la moyenne des valeurs contenues dans la liste.
    La moyenne ici est égale à :
    $\dfrac{1+9+9+5+0+3+6+12+0+5}{10}=5$.
    Affirmation 5 fausse
    $\quad$

 

Ex 4

Exercice 4

  1. a. Pour tout $n\in \N$ on note $P(n):~u_n=2\times 0,9^n-3$.
    Initialisation : $u_0=-1$ et $2\times 0,9^0-3=-1$.
    Donc $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    $\begin{align*} u_{n+1}&=0,9u_n-0,3\\
    &=0,9\left(2\times 0,9^n-3\right)-0,3 \\
    &=2\times 0,9^{n+1}-2,7-0,3\\
    &=2\times 0,9^{n+1}-0,3\end{align*}$
    $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Par conséquent, pour tout $n\in \N$, on a $u_n=2\times 0,9^n-3$.
    $\quad$
    b. Pour tout $n\in \N$ on a $u_n=-3+2\times 0,9^n>-3$ (on ajoute un nombre positif à $-3$).
    $\begin{align*}u_n+1&=2\times 0,9^n-2 \\
    &=2\left(0,9^n-1\right) \\
    &<0\end{align*}$
    Donc $-3<u_n\pp -1$.
    $\quad$
    c. Soit $n\in \N$.
    $\begin{align*} u_{n+1}-u_n&=2\times 0,9^{n+1}-3-2\times 0,9^n+3\\
    &=2\times 0,9^n(0,9-1) \\
    &<0\end{align*}$
    La suite $\left(u_n\right)$ est strictement décroissante.
    $\quad$
    d. $0<0,9<1$ donc $\lim\limits_{n\to +\infty} 0,9^n=0$.
    Par conséquent $\lim\limits_{n\to +\infty} u_n=-3$.
    La suite $\left(u_n\right)$ converge vers $-3$.
    $\quad$
  2. a. La fonction $g$ est dérivable sur $]-3;-1]$ en tant que somme et composée de fonctions dérivables.
    Pour tout $x\in ]-3;-1]$
    $\begin{align*} g'(x)&=\dfrac{0,5}{0,5x+1,5}-1 \\
    &=\dfrac{0,5-0,5x-1,5}{0,5x+1,5} \\
    &=\dfrac{-0,5x-1}{0,5x+1,5} \\
    &=-\dfrac{0,5x+1}{0,5x+1,5}\end{align*}$
    Sur $]-3;-1]$ on a $0,5x+1,5>0$.
    $0,5x+1=0 \ssi 0,5x=-1 \ssi x=-2$
    $-(0,5x+1)>0 \ssi 0,5x+1<0 \ssi x<-2$
    La fonction $g$ est donc strictement croissante sur $]-3;-2]$ et strictement décroissante sur $[-2;-1]$.
    $g(-1)=0-(-1)=1$.
    $\lim\limits_{x\to -3^+} 0,5x+1,5=0^+$ et $\lim\limits_{X\to 0^+} \ln(X)=-\infty$.
    Donc $\lim\limits_{x\to -3^+} \ln(0,5x+1,5)=-\infty$ et $\lim\limits_{x\to -3^+} g(x)=-\infty$.
    $\quad$
    b. $g(-2)=\ln(0,5)+2 \approx 1,3$.
    La fonction $g$ est continue (car dérivable) et strictement croissante sur $]-3;-2]$.
    $g(-2)>0$ et $\lim\limits_{x\to -3^+} g(x)=-\infty$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $g(x)=0$ admet une unique solution $\alpha$ sur $]-3;-2]$.
    Pour tout $x\in ]-2;-1]$ on a $g(x)\pg -1$ car la fonction $g$ est décroissante sur cette intervalle et $g(-1)=1$.
    L’équation $g(x)=0$ n’admet donc pas de solution sur cet intervalle.
    Finalement l’équation $g(x)=0$ admet une unique solution $\alpha$ sur $]-3;-1]$.
    D’après la calculatrice $\alpha\approx -2,8887$. Par conséquent $-2,889<\alpha <-2,888$.
    $\quad$
  3. a. Soit $n\in \N$
    $\begin{align*} v_{n+1}-v_n&=\ln\left(0,5u_{n+1}+1,5\right) -\ln\left(0,5u_{n}+1,5\right)\\
    &=\ln\left(0,9^{n+1}-1,5+1,5\right)-\ln\left(0,9^{n}-1,5+1,5\right) \\
    &=\ln\left(0,9^{n+1}\right)-\ln\left(0,9^{n}\right)\\
    &=(n+1)\ln(0,9)-n\ln(0,9)\\
    &=\ln(0,9)\end{align*}$
    La suite $\left(v_n\right)$ est donc arithmétique de raison $\ln(0,9)$.
    $\quad$
    b.
    $\begin{align*} u_n=v_n&\ssi u_n=\ln\left(0,5u_n+1,5\right) \\
    &\ssi \ln\left(0,5u_n+1,5\right) -u_n=0 \\
    &\ssi g\left(u_n\right)=0\end{align*}$
    $\quad$
    c. $v$ est une suite arithmétique de premier terme $0$ et de raison $\ln(0,9)$.
    Donc pour tout $n\in \N$, $v_n=n\ln(0,9)$.
    $u_n=v_n\ssi g\left(u_n\right)=0\ssi g\left(v_n\right)=0 \ssi v_n=\alpha$.
    Par conséquent $n\ln(0,9)=\alpha \ssi n=\dfrac{\alpha}{\ln(0,9)}$
    Or $-2,889<\alpha <-2,888$ donc $\dfrac{-2,889}{\ln(0,9)}<n<\dfrac{-2,888}{\ln(0,9)}$
    Mais $\dfrac{-2,889}{\ln(0,9)} \approx 27,42$ et $\dfrac{-2,888}{\ln(0,9)} \approx 27,41$.
    Il n’existe aucun entier naturel entre ces deux nombres.
    Il n’existe donc aucun rang $k\in \N$ pour lequel $u_k=\alpha$.
    $\quad$
    d. Or $u_n=\alpha\ssi g\left(u_n\right)=0\ssi u_n=v_n$.
    Il n’existe donc aucun rang $k\in \N$ pour lequel $v_k=u_k$.
    $\quad$

Énoncé

Exercice 1      4 points

Thème : probabilités

Les parties A et B peuvent être traitées indépendamment.

Les utilisateurs de vélo d’une ville sont classés en deux catégories disjointes :

  • ceux qui utilisent le vélo dans leurs déplacements professionnels ;
  • ceux qui utilisent le vélo uniquement pour leurs loisirs.

Un sondage donne les résultats suivants :

  • $21 \%$ des utilisateurs ont moins de 35 ans. Parmi eux, $68 \%$ utilisent leur vélo uniquement pour leurs loisirs alors que les autres l’utilisent dans leurs déplacements professionnels ;
  • parmi les 35 ans ou plus, seuls $20 \%$ utilisent leur vélo dans leurs déplacements professionnels, les autres l’utilisent uniquement pour leurs loisirs.

On interroge au hasard un utilisateur de vélo de cette ville.
Dans tout l’exercice on considère les événements suivants :

  • $J$ : « la personne interrogée a moins de 35 ans » ;
  • $T$ : « la personne interrogée utilise le vélo dans ses déplacements professionnels » ;
  • $\conj{J}$ et $\conj{T}$ sont les événements contraires de $J$ et $T$.

Partie A

  1. Calculer la probabilité que la personne interrogée ait moins de 35 ans et utilise son vélo dans ses déplacements professionnels. On pourra s’appuyer sur un arbre pondéré.
    $\quad$
  2.  Calculer la valeur exacte de la probabilité de $T$.
    $\quad$
  3. On considère à présent un habitant qui utilise son vélo dans ses déplacements professionnels. Démontrer que la probabilité qu’il ait moins de 35 ans est $0,30$ à $10^{-2}$ près.
    $\quad$

Partie B

Dans cette partie, on s’intéresse uniquement aux personnes utilisant leur vélo dans leurs déplacements professionnels. On admet que $30 \%$ d’entre elles ont moins de 35 ans.

On sélectionne au hasard parmi elles un échantillon de 120 personnes auxquelles on va soumettre un questionnaire supplémentaire. On assimile la sélection de cet échantillon à un tirage aléatoire avec remise.

On demande à chaque individu de cet échantillon son âge.

$X$ représente le nombre de personnes de l’échantillon ayant moins de 35 ans.

Dans cette partie, les résultats seront arrondis à $10^{-3}$ près.

  1. Déterminer la nature et les paramètres de la loi de probabilité suivie par $X$.
    $\quad$
  2. Calculer la probabilité qu’au moins $50$ utilisateurs de vélo parmi les $120$ aient moins de 35 ans.
    $\quad$

$\quad$

Exercice 2      5 points

Thème : géométrie dans l’espace

L’espace est muni d’un repère orthonormé $\Oijk$.

On considère :

  • $d_1$ la droite passant par le point $H(2; 3; 0)$ et de vecteur directeur $\vec{u}\begin{pmatrix} 1\\-1\\1\end{pmatrix}$;
  • $d_2$ la droite de représentation paramétrique :$$\begin{cases} x=2k-3\\y=k\\z=5\end{cases} \qquad \text{où $k$ décrit $\R$}$$

Le but de cet exercice est de déterminer une représentation paramétrique d’une droite $\Delta$ qui soit perpendiculaire aux droites $d_1$ et $d_2$.

  1. a. Déterminer un vecteur directeur $\vec{v}$ de la droite $d_2$.
    $\quad$
    b. Démontrer que les droites $d_1$ et $d_2$ ne sont pas parallèles.
    $\quad$
    c. Démontrer que les droites $d_1$ et $d_2$ ne sont pas sécantes.
    $\quad$
    d. Quelle est la position relative des droites $d_1$ et $d_2$ ?
    $\quad$
  2. a. Vérifier que le vecteur $\vec{w}\begin{pmatrix}-1\\2\\3\end{pmatrix}$ est orthogonal à $\vec{u}$ et à $\vec{v}$.
    $\quad$
    b. On considère le plan $P$ passant par le point $H$ et dirigé par les vecteurs $\vec{u}$ et $\vec{w}$.
    On admet qu’une équation cartésienne de ce plan est :
    $$5x+4y-z-22 = 0.$$
    Démontrer que l’intersection du plan $P$ et de la droite $d_2$ est le point $M(3; 3; 5)$.
    $\quad$
  3. Soit $\Delta$ la droite de vecteur directeur $\vec{w}$ passant par le point $M$. Une représentation paramétrique de $\Delta$ est donc donnée par :
    $$\begin{cases} x=-r+3\\y=2r+3\\z=3r+5\end{cases} \qquad \text{où $r$ décrit $\R$}$$
    a. Justifier que les droites $\Delta$ et $d_1$ sont perpendiculaires en un point $L$ dont on déterminera les coordonnées.
    $\quad$
    b. Expliquer pourquoi la droite $\Delta$ est solution du problème posé.
    $\quad$

$\quad$

Exercice 3      5 points

Thème : fonction exponentielle, algorithmique

Pour chacune des affirmations suivantes, indiquer si elle est vraie ou fausse. Chaque réponse doit être justifiée. Une réponse non justifiée ne rapporte aucun point.

  1. Affirmation : La fonction $f$ définie sur $\R$ par $f(x)=\e^x-x$ est convexe.
    $\quad$
  2. Affirmation : L’équation $\left(2e^x-6\right)\left(\e^x + 2\right) = 0$ admet $\ln(3)$ comme unique solution dans $\R$.
    $\quad$
  3. Affirmation : $$\lim\limits_{x\to +\infty} \dfrac{\e^{2x}-1}{\e^x-x}=0$$
    $\quad$
  4. Soit $f$ la fonction définie sur $\R$ par $f(x)=(6x+5)\e^{3x}$ et $F$ la fonction définie sur $\R$ par : $F(x) = (2x + 1)\e^{3x}+4$.
    Affirmation : $F$ est la primitive de $f$ sur $\R$ qui prend la valeur $5$ quand $x = 0$.
    $\quad$
  5. On considère la fonction $\texttt{mystere}$ définie ci-dessous qui prend une liste $\texttt{L}$ de nombres en paramètre.
    On rappelle que $\texttt{len(L)}$ représente la longueur de la liste $\texttt{L}$.
    $$\begin{array}{|lll|}
    \hline
    \\
    \phantom{1234}&\texttt{def mystere(L) :}&\phantom{1234} \\
    &\hspace{0.8cm} \texttt{S = 0}& \\
    &\hspace{0.8cm} \texttt{for i in range(len(L)) :}&\\
    &\hspace{1.6cm} \texttt{S = S + L[i]}&\\
    &\hspace{0.8cm} \texttt{return S / len(L)}&\\
    \\
    \hline
    \end{array}$$
    Affirmation : L’exécution de $\texttt{mystere([1,9,9,5,0,3,6,12,0,5]) }$ renvoie $\texttt{50}$.
    $\quad$

$\quad$

Exercice 4      6 points

Thème : suites, fonctions

Soit $\left(u_n\right)$ la suite définie par $u_0=-1$ et, pour tout entier naturel $n$ : $$u_{n+1}=0,9u_n-0,3$$

  1. a. Démontrer par récurrence que, pour tout $n\in \N, u_n = 2 \times 0,9^n-3$.
    $\quad$
    b. En déduire que pour tout $n\in \N$, $-3 < u_n \pp -1$.
    $\quad$
    c. Démontrer que la suite $\left(u_n\right)$ est strictement décroissante.
    $\quad$
    d. Démontrer que la suite $\left(u_n\right)$ converge et préciser sa limite.
    $\quad$
  2. On se propose d’étudier la fonction $g$ définie sur $]-3 ; -1]$ par :
    $$g(x) = \ln(0,5x + 1,5)-x$$.
    a. Justifier toutes les informations données par le tableau de variations de la fonction $g$ (limites, variations, image de $-1$).
    $\quad$

    $\quad$
    b. En déduire que l’équation $g(x) = 0$ a exactement une solution que l’on
    notera $\alpha$ et dont on donnera un encadrement d’amplitude $10^-3$.
    $\quad$
  3. Dans la suite de l’exercice, on considère la suite $\left(v_n\right)$ définie pour tout $n\in\N$, par : $$v_n = \ln\left(0,5u_n + 1,5\right).$$
    a. En utilisant la formule donnée à la question 1. a., démontrer que $\left(v_n\right)$ est arithmétique de raison $\ln(0,9)$.
    $\quad$
    b. Soit $n$ un entier naturel.
    Démontrer que $u_n=v_n$ si, et seulement si $g\left(u_n\right)=0$.
    $\quad$
    c. Démontrer qu’il n’existe aucun rang $k\in \N$ pour lequel $u_k = \alpha$.
    $\quad$
    d. En déduire qu’il n’existe aucun rang $k\in \N$ pour lequel $v_k = u_k$.
    $\quad$

$\quad$