E3C – Séries technologiques – Automatismes – Janvier 2020

E3C – Automatismes

Séries technologiques

  1. Pour un coefficient multiplicateur de $1,33$ le taux d’évolution en pourcentage est :
    $\quad$
    Correction Question 1

    $1,33=1+\dfrac{33}{100}$
    Le taux d’évolution est donc de $33\%$.
    $\quad$

    [collapse]

    $\quad$
  2. Après une hausse de $120 \%$ un produit coûte $1~200$ €.
    Quel était son prix initial ?
    $\quad$
    Correction Question 2

    On appelle $P$ le prix initial.
    On a donc :
    $\begin{align*}
    P\left(1+\dfrac{120}{100}\right)=1~200 &\ssi 2,2P=1~200\\
    &\ssi P=\dfrac{1~200}{2,2}
    \end{align*}$
    $P$ n’admet pas d’écriture décimale. Une écriture sous la forme d’une fraction irréductible est $P=\dfrac{6~000}{11}$.
    $\quad$

    [collapse]

    $\quad$
  3. Écrire sous la forme décimale le résultat du calcul suivant $3\times 10^3+6\times 10^2+4+5\times 10^{-1}$.
    $\quad$
    Correction Question 3

    $\begin{align*} &3\times 10^3+6\times 10^2+4+5\times 10^{-1}\\=&3\times 1~000+6\times 100+4+5\times 0,1\\
    =&3~604,5\end{align*}$
    $\quad$

    [collapse]

    $\quad$
  4. Résoudre l’équation $5-2x=0$.
    $\quad$
    Correction Question 4

    $5-2x=0 \ssi 2x=5\ssi x=\dfrac{5}{2}$.
    La solution de l’équation est $\dfrac{5}{2}$.
    $\quad$

    [collapse]

    $\quad$
  5. L’ensemble des solutions de l’inéquation $-3x+6>0$ est
    $\quad$
    Correction Question 5

    $-3x+6>0\ssi -3x>-6\ssi x<2$
    L’ensemble des solutions est $]-\infty;2[$.
    $\quad$

    [collapse]

    $\quad$
    $\quad$
  6. Factoriser $3x(x+5)-(x+5)^2$.
    $\quad$
    Correction Question 6

    $\begin{align*} 3x(x+5)-(x+5)^2&=(x+5)\left[3-(x+5)\right] \\
    &=(x+5)(3x-x-5)\\
    &=(x+5)(2x-5)\end{align*}$
    $\quad$

    [collapse]

    $\quad$
  7. $x$ et $y$ sont des nombres réels tels que $6-2x\pp 4y$.
    Isoler $x$ dans cette inégalité.
    $\quad$
    Correction Question 7

    $6-2x\pp 4y \ssi -2x\pp 4y-6 \ssi x\pg 3-2y$
    $\quad$

    [collapse]

    $\quad$
  8. $f(x)=x^2-3$
    Calculer l’image de $\sqrt{2}$ par cette fonction.
    $\quad$
    Correction Question 8

    $\begin{align*} f\left(\sqrt{2}\right)&=\sqrt{2}^2-3\\
    &=2-3\\
    &=-1\end{align*}$
    $\quad$

    [collapse]

    $\quad$
  9. Les coordonnées du point d’intersection de la droite d’équation $y=3x+2$ avec l’axe des abscisses sont
    $\quad$
    Correction Question 9

    $3x+2=0\ssi 3x=-2 \ssi x=-\dfrac{2}{3}$
    Les coordonnées du point d’intersection de la droite d’équation $y=3x+2$ avec l’axe des abscisses sont $\left(-\dfrac{2}{3};0\right)$.
    $\quad$

    [collapse]

    $\quad$
  10. Donner l’équation réduite de la droite $(D)$ représentée ci-dessous
    $\quad$
    Correction Question 10

    On lit que l’ordonnée à l’origine est $-1$ et que le coefficient directeur est $\dfrac{1}{2}$ (on “monte” de $1$ unité quand on se déplace de $2$ unités vers la droite).
    L’équation réduite de $(D)$ est donc $y=\dfrac{1}{2}x-1$.
    $\quad$

    [collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence