E3C – Séries technologiques – Automatismes – Janvier 2020

E3C – Automatismes

Séries technologiques

  1. Fraction irréductible égale à $\dfrac{2}{3}-\dfrac{2}{5}$.
    $\quad$
    Correction Question 1

    $\begin{align*}\dfrac{2}{3}-\dfrac{2}{5}&=\dfrac{10}{15}-\dfrac{6}{15}\\
    &=\dfrac{4}{15}\end{align*}$

    [collapse]

    $\quad$
  2. Compléter $\dfrac{14}{3}-\ldots=2$.
    $\quad$
    Correction Question 2

    $2=\dfrac{6}{3}$ on a donc $\dfrac{14}{3}-2=\dfrac{14}{3}-\dfrac{6}{3}=\dfrac{8}{3}$
    Ainsi $\dfrac{14}{3}-\dfrac{8}{3}=2$
    $\quad$

    [collapse]

    $\quad$
  3. Compléter $(2x)^3=\ldots x^3$
    $\quad$
    Correction Question 3

    $(2x)^3=2^3x^3=8x^3$
    $\quad$

    [collapse]

    $\quad$
  4. Compléter : Augmenter une quantité de $14\%$ c’est la multiplier par $\ldots$
    $\quad$
    Correction Question 4

    Augmenter une quantité de $14\%$ c’est la multiplier par $1+\dfrac{14}{100}=1,14$.
    $\quad$

    [collapse]

    $\quad$
  5. Après augmentation d’un prix de $50\%$ on obtient $36$ €. Quel est ce prix?
    $\quad$
    Correction Question 5

    On appelle $P$ le prix cherché.
    On a donc $x\times \left(1+\dfrac{50}{100}\right)=36$
    Soit $1,5x=36$
    et donc $x=\dfrac{36}{1,5}$
    C’est-à-dire $x=24$ (diviser par $1,5$ revient à diviser par $3$ puis multiplier par $2$)
    $\quad$

    [collapse]

    $\quad$

    $\quad$

  6. Factoriser $3(x+7)-(x+1)(x+7)$
    $\quad$
    Correction Question 6

    $\begin{align*} 3(x+7)-(x+1)(x+7)&=(x+7)\left[3-(x+1)\right] \\
    &=(x+7)(3-x-1)\\
    &=(x+7)(2-x)\end{align*}$
    $\quad$

    [collapse]

    $\quad$

Voici la courbe représentative d’une fonction $f$ définie sur $[-1;3]$.

Compléter par lecture graphique.

  1. $f(2)=$
    $\quad$
    Correction Question 7

    $f(2)=0$
    $\quad$

    [collapse]

    $\quad$
  2. Nombre d’antécédents de $-0,2$ par $f$ :
    $\quad$
    Correction Question 7

    Graphiquement, il semblerait que la droite d’équation $y=-0,2$ coupe $3$ fois la courbe représentant la fonction $f$.
    $-0,2$ semble donc avoir $3$ antécédents par $f$.
    $\quad$

    [collapse]

    $\quad$

On considère la droite $(D)$ ci-dessous.


Compléter par lecture graphique

  1. Équation réduite de $(D)$ : $\ldots$
    $\quad$
    Correction Question 9

    Graphiquement, il semblerait que le coefficient directeur de la droite soit $\dfrac{1}{2}$ et son ordonnée à l’origine $1$.
    Une équation réduite de $(D)$ semble donc être $y=\dfrac{1}{2}x+1$.
    $\quad$

    [collapse]

    $\quad$
  2. Si $A$ est le point de $(D)$ d’ordonnée $3$, son abscisse est : $\ldots$
    $\quad$
    Correction Question 10

    L’ordonnée augmente d’une unité quand l’abscisse augmente de deux unités.
    L’abscisse du point $A$ est donc $4$.
    $\quad$

    [collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence