E3C – Séries technologiques – Automatismes – Janvier 2020

E3C – Automatismes

Séries technologiques

  1. Une baisse de $10\%$ suivie d’une baisse de $20\%$ correspond à une baisse globale de $\ldots$
    $\quad$
    Correction Question 2

    Le coefficient multiplicateur associé à cette évolution est :
    $\begin{align*} m&=\left(1-\dfrac{10}{100}\right)\times \left(1-\dfrac{20}{100}\right)\\
    &=0,9\times 0,8\\
    &=0,72\\
    &=1-0,28\end{align*}$
    Il s’agit donc d’une baisse globale de $28\%$.
    $\quad$

    [collapse]

    $\quad$
  2. La forme décimale de $\frac{7}{4}\times 10^{-3}$ est
    $\quad$
    Correction Question 2

    $\begin{align*} \dfrac{7}{4}\times 10^{-3}&=1,75\times 10^{-3} \\
    &=0,001~75\\
    \end{align*}$
    $\quad$

    [collapse]

    $\quad$
  3. La fraction irréductible égale à $1-\left(\dfrac{2}{3}\right)^2$ est :
    $\quad$
    Correction Question 3

    $\begin{align*} 1-\left(\dfrac{2}{3}\right)^2&=1-\dfrac{4}{9} \\
    &=\dfrac{5}{9}\end{align*}$
    $\quad$

    [collapse]

    $\quad$

Une série statistique est résumée à l’aide du diagramme en boîtes ci-dessous, utilisez-le pour répondre aux questions 4 et 5.

  1. L’écart interquartile de cette série vaut
    $\quad$
    Correction Question 4

    D’après le graphique, l’écart interquartile vaut $55-30=25$.
    $\quad$

    [collapse]

    $\quad$
  2. Le pourcentage des valeurs de cette série comprises entre $30$ et $60$ est de :
    $\quad$
    Correction Question 5

    D’après le graphique, le premier quartile est $Q_1=30$ et le maximum vaut $60$.
    Ainsi $75\%$ des valeurs de cette série sont comprises entre $30$ et $60$.
    $\quad$

    [collapse]

    $\quad$

    $\quad$
  3. Résoudre l’équation $3x-10=x+2$.
    $\quad$
    Correction Question 6

    $\begin{align*} 3x-10=x+2 &\ssi 3x-x=2+10\\
    &\ssi 2x=12\\
    &\ssi x=6\end{align*}$
    $\quad$

    [collapse]

    $\quad$
  4. Développer l’expression $(3x-2)^2$.
    $\quad$
    Correction Question 7

    $\begin{align*} (3x-2)^2&=(3x)^2-2\times 3x\times 2+2^2 \\
    &=9x^2-12x+4\end{align*}$
    $\quad$

    [collapse]

    $\quad$
  5. Factoriser l’expression $x^3+5x$.
    $\quad$
    Correction Question 8

    $x^3+5x=x\left(x^2+5\right)$
    $\quad$

    [collapse]

    $\quad$
  6. Tracer la droite d’équation $y=-2x+3$ dans le repère ci-dessous

    $\quad$
    Correction Question 9

    Si $x=0$ alors $y=-2\times 0+3=3$. Le point $A$ de coordonnées $(0;3)$ appartient donc à la droite $\Delta$.
    Si $x=2,5$ alors $y=-2\times 2,5+3=-2$. Le point $B$ de coordonnées $(2,5;-2)$ appartient à la droite $\Delta$.
    $\quad$

    [collapse]

    $\quad$
  7. Dans un repère, on donne $A (5 ; 8)$ et $B (1 ; 0)$, le coefficient directeur de la droite $(AB)$ est :
    $\quad$
    Correction Question 10

    $A$ et $B$ ont des abscisses différentes.
    Le coefficient directeur de la droite $(AB)$ est donc :
    $\begin{align*} m&=\dfrac{8-0}{5-1} \\
    &=\dfrac{8}{4}\\
    &=2\end{align*}$
    $\quad$

    [collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence