E3C – Séries technologiques – Automatismes – Janvier 2020

E3C – Automatismes

Séries technologiques

  1. Dans un repère du plan, on donne $A(2; 4)$ et $B(6; 16)$.
    Déterminer une équation de la droite $(AB)$.
    $\quad$
    Correction Question 1

    $A$ et $B$ n’ont pas la même abscisse.
    Une équation de cette droite est donc de la forme $y=mx+p$.
    Le coefficient directeur est $m=\dfrac{16-4}{6-2}=3$.
    Une équation de la droite $(AB)$ est donc de la forme $y=3x+p$.
    Or $A(2;4)$ appartient à la droite $(AB)$.
    Par conséquent $4=3\times 2+p$. Donc $p=-2$.
    $\quad$

    [collapse]

    $\quad$
  2. Soit $f$ la fonction définie sur $\R$ par $f(x)=2x^2-x+3$. On note $C_f$ sa courbe représentative dans un repère du plan.
    Déterminer l’ordonnée du point de $C_f$ ayant pour abscisse $-3$.
    $\quad$
    Correction Question 2

    $f(-3)=2(-3)^2-(-3)+3=18+3+3=24$.
    Le point de $C_f$ ayant pour abscisse $-3$ a pour ordonnée $24$.
    $\quad$

    [collapse]

    $\quad$
  3. Factoriser l’expression $4(x+2)+(x+2)^2$.
    $\quad$
    Correction Question 3

    $\begin{align*} 4(x+2)+(x+2)^2&=(x+2)\left[4+(x+2)\right]\\
    &=(x+2)(x+6)\end{align*}$
    $\quad$

    [collapse]

    $\quad$
  4. Soit $g$ la fonction définie par $g(x)=-3x+7$.
    Déterminer l’antécédent de $-11$ par $g$.
    $\quad$
    Correction Question 4

    On veut résoudre l’équation
    $\begin{align*} g(x)=-11&\ssi -3x+7=-11 \\
    &\ssi -3x=-18\\
    &\ssi x=6\end{align*}$
    L’antécédent cherché est donc $6$.
    $\quad$

    [collapse]

    $\quad$
  5. Après une baisse de $20\%$ un produit coûte $200$ €. Quel était son prix initial?
    $\quad$
    Correction Question 5

    On appelle $P$ son prix initial.
    On a donc :
    $\begin{align*} P\times \left(1-\dfrac{20}{100}\right)=200 &\ssi 0,8P=200\\
    &\ssi P=\dfrac{200}{0,8} \\
    &\ssi P = 250\end{align*}$
    Remarque : diviser par $0,8$ revient à diviser par $4$ puis à multiplier par $5$.
    Le produit coûtait donc initialement $250$ €.
    $\quad$

    [collapse]

    $\quad$
    $\quad$
  6. Calculer $\dfrac{10+10^3}{10}$
    $\quad$
    Correction Question 6

    $\dfrac{10+10^3}{10}=1+10^2=101$
    $\quad$

    [collapse]

    $\quad$
  7. Résoudre l’équation $x^2=25$
    $\quad$
    Correction Question 7

    Les solutions de l’équation sont $-5$ et $5$.
    $\quad$

    [collapse]

    $\quad$
  8. La formule de l’IMC (indice de masse corporelle; noté $I$) est $I=\dfrac{m}{t^2}$ où $m$ est la masse en kilogramme et $t$ la taille en mètre.
    Exprimer $t$ en fonction de $m$ et de $I$.
    $\quad$
    Correction Question 8

    On a donc $t^2=\dfrac{m}{I}$ soit, puisque $t$ est positif, $t=\sqrt{\dfrac{m}{I}}$.
    $\quad$

    [collapse]

    $\quad$
  9. Compléter le tableau de signe de l’expression $(x-1)(x+3)$.
    $\quad$
    Correction Question 9

    $x-1=0 \ssi x=1$ et $x-1>0 \ssi x>1$
    $x+3=0 \ssi x=-3$ et $x+3>0 \ssi x>-3$
    On obtient donc le tableau de signes suivant :

    $\quad$

    [collapse]

    $\quad$
  10. Par lecture graphique, dresser le tableau de variation de la fonction $h$ définie sur $[-6; 6]$ et représentée ci-dessous dans un repère du plan :

    $\quad$

    $\quad$
    Correction Question 10

    [collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence