E3C – Séries technologiques – Fonctions – Janvier 2020

E3C – Fonctions

Séries technologiques

Un athlète s’entraîne au lancer de javelot. Au moment du lancer, le lanceur tient le javelot de telle manière que la pointe se trouve à la hauteur du sommet de son crâne. Pendant sa course, on considère que les frottements qui s’exercent sur la pointe du javelot sont négligeables, et que le javelot n’est soumis qu’à son poids. La trajectoire de la pointe du javelot est donc modélisée par une parabole.

  1. Lors du premier essai de l’athlète, la trajectoire de la pointe du javelot est donnée par la fonction $f$ telle que $f(x)=-0,01x^2+0,57x+1,8$, où $x$ est la distance au sol en mètres parcourue par la pointe du javelot et $f(x)$ l’altitude, en mètres, de la pointe du javelot quand celle-ci se trouve à une distance au sol de $x$ mètres du lanceur. On donne ci-dessous la représentation graphique de $f$.
    a. Calculer $f(0)$. Quelle est la taille de l’athlète ?
    $\quad$
    b. Vérifier que $f(x)=-0,01(x+3)(x-60)$.
    $\quad$
    c. Quelle est la distance au sol totale parcourue par le javelot ?
    $\quad$
    d. Donner le tableau de variation de la fonction $f$ sur l’intervalle $[0 ; 60]$. La hauteur maximale atteinte par le javelot dépasse-t-elle $10$ m? Justifier.
    $\quad$
  2. Lors du deuxième essai, la pointe du javelot réalise une trajectoire décrite par la fonction $h$ telle que $h(x) = -0,01x^2+0,6x+1,8$, où $x$ est la distance au sol en mètres parcourue par la pointe du javelot et $h(x)$ l’altitude en mètres de la pointe du javelot quand celle-ci se trouve à une distance au sol de $x$ mètres du lanceur.
    On a écrit le script suivant en Python :
    $$\begin{array}{|l|}
    \hline
    \text{x=60}\\
    \text{for i in range(1,6):}\\
    \hspace{1cm} \text{print(” x= “,x , “h(x)=”,-0.01*x**2+0.6*x+1.8)}\\
    \hspace{1cm} \text{x=60+i}\\
    \hline
    \end{array}$$
    Lorsqu’on l’exécute, on obtient l’affichage suivant :
    $\qquad \text{x= 60 h(x)= 1.8}$
    $\qquad \text{x= 61 h(x)= 1.1900000000000006}$
    $\qquad \text{x= 62 h(x)= 0.559999999999998}$
    $\qquad \text{x= 63 h(x)= -0.09000000000000052}$
    $\qquad \text{x= 64 h(x)= -0.7600000000000022}$
    L’athlète a-t-il amélioré sa performance par rapport à son premier lancer ?
    $\quad$

$\quad$

Correction Exercice

  1. a. $f(0)=-0,01\times 0^2+0,57\times 0+1,8=1,8$
    L’athlète mesure donc $1,8$ m.
    $\quad$
    b. Pour tout réel $x$ on a :
    $\begin{align*} -0,01(x+3)(x-60)&=-0,01\left(x^2-60x+3x-180\right)\\
    &=-0,01\left(x^2-57x-180\right)\\
    &=-0,01x^2+0,57x+1,8\\
    &=f(x)\end{align*}$
    $\quad$
    c. $f(x)=0 \ssi x+3=0$ ou $x-60=0$ $\ssi x=-3$ ou $x=60$.
    Le javelot touche donc le sol après avoir parcouru $60$ mètres.
    $\quad$
    d. $f$ est une fonction du second degré dont le coefficient principal est $a=-0,01<0$.
    Son maximum est atteint en $-\dfrac{b}{2a}=28,5$.
    On obtient donc le tableau de variations suivant :

    La hauteur maximale est donc $9,922~5$ m. Elle ne dépasse donc pas $10$ m.
    $\quad$
  2. D’après le script $h$ s’annule pour $x\in ]62;63[$.
    La distance parcourue par le javelot est donc supérieure à $60$ m.
    L’athlète a donc amélioré sa performance par rapport à son premier lancer.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence