E3C – Séries technologiques – Fonctions – Janvier 2020

E3C – Fonctions

Séries technologiques

Soit $f$ une fonction polynôme du second degré, définie sur $\R$ et représentée par la parabole ci-dessous.

  1. Par lecture graphique :
    a. Donner l’image de $0$ par $f$.
    $\quad$
    b. Déterminer les racines de la fonction $f$.
    $\quad$
    c. Donner le nombre de solutions de l’équation $f(x)=1$.
    $\quad$
  2. Expliquer pourquoi $f(x)$ peut s’écrire sous la forme $2(x+1)(x-2)$.
    $\quad$
  3. Pour trouver un encadrement de la solution de l’équation $f(x)=1$ dans l’intervalle $[2;3]$ on a écrit les fonctions Python ci-dessous.
    $$\begin{array}{|cl|}
    \hline
    1&\text{def f(x):}\\
    2&\quad \text{return 2*(x+1)*(x-2)}\\
    3&\text{def balayage(pas):}\\
    4&\quad \text{x=2}\\
    5&\quad \text{while f(x)<1:}\\
    6&\qquad \text{x=x+pas}\\
    7&\quad \text{return (x-pas,x)}\\
    \hline
    \end{array}$$
    Par exemple, l’appel $\text{balayage(1)}$ renvoie le résultat $(2,3)$:
    $$\begin{array}{|l|}
    \hline
    >>>~~\text{balayage(1)}\\
    (2,3)\\
    \hline\end{array}$$
    L’instruction $\text{balayage(0.0001)}$ renvoie le résultat $(2.1583,2.1584)$.
    Que signifie ce résultat?
    $\quad$

$\quad$

Correction Exercice

  1. a. Graphiquement on lit que $f(0)=-4$.
    $\quad$
    b. Graphiquement les racines de la fonction $f$ sont $-1$ et $2$.
    $\quad$
    c. Graphiquement, l’équation $f(x)=1$ possède deux solutions.
    $\quad$
  2. $-1$ et $2$ semblent être les racines de la fonction du second degré $f$.
    Pour tout réel $x$ on peut donc écrire $f(x)=a\left(x-(-1)\right)(x-2)$ soit $f(x)=a(x+1)(x-2)$.
    Ainsi $f(0)=a\times -2$.
    Or $f(0)=-4$ donc $-2a=-4$ soit $a=2$.
    Par conséquent $f(x)=2(x+1)(x-2)$.
    $\quad$
  3. Cela signifie qu’un encadrement à $0,000~1$ près de la solution de l’équation $f(x)=1$ dans l’intervalle $[2;3]$ est $[2,158~3;2,158~4]$.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence