E3C – Séries technologiques – Automatismes – Janvier 2020

E3C – Automatismes

Séries technologiques

  1. Calculer la masse correspondant à $\dfrac{2}{3}$ de $240$ grammes.
    $\quad$
    Correction Question 1

    $\dfrac{2}{3} \times 240 = 2\times 80=160$.
    Cela correspond donc à $160$ g.
    $\quad$

    [collapse]

    $\quad$
  2. Compléter : « augmenter de $0,3 \%$ revient à multiplier par …… »
    $\quad$
    Correction Question 2

    Cela revient à multiplier par $1+\dfrac{0,3}{100}=1,003$.
    $\quad$

    [collapse]

    $\quad$
  3. Compléter : « diminuer de …… $\%$ revient à multiplier par $0,86$ »
    $\quad$
    Correction Question 3

    $0,86=1-0,14$
    Donc « diminuer de $14\%$ revient à multiplier par $0,86$ »
    $\quad$

    [collapse]

    $\quad$
  4. Des mesures annuelles ont été relevées dans le tableau suivant :
    $$\begin{array}{|c|c|c|c|}
    \hline
    \text{années}&2015&2016&2017\\
    \hline
    \text{mesures}&&5,00&4,00\\
    \hline
    \end{array}$$
    a. Déterminer le taux d’évolution des mesures entre 2016 et 2017.
    $\quad$
    Correction Question 4.a.

    On a $\dfrac{4,00-5,00}{5,00}=-0,2$
    Il s’agit donc d’une baisse de $20\%$.
    $\quad$

    [collapse]

    $\quad$
    b. Sachant que le taux de 2015 à 2016 est $+25 \%$, calculer la mesure en 2015.
    $\quad$
    Correction Question 4.b.

    On appelle $x$ la mesure en 2015.
    On a donc $x\left(1+\dfrac{25}{100}\right)=5,00$
    Soit $1,25x=5,00$ et par conséquent $x=\dfrac{5,00}{1,25}=4,00$
    $\quad$.

    [collapse]

    $\quad$

    $\quad$

  5. Déterminer le taux global d’une hausse de $10 \%$ suivie d’une baisse de $20 \%$.
    $\quad$
    Correction Question 5

    Le coefficient multiplicateur global est :
    $\begin{align*} m&=\left(1+\dfrac{10}{100}\right)\left(1-\dfrac{20}{100}\right) \\
    &=1,1\times 0,8 \\
    &=0,88\\
    &=1-0,12\end{align*}$
    Il s’agit donc d’une baisse de $12\%$ soit un taux globale de $-12\%$.
    $\quad$

    [collapse]

    $\quad$
  6. Résoudre $2x-(2-x)=7$.
    $\quad$
    Correction Question 6

    $2x-(2-x)=7\ssi 2x-2+x=7 \ssi 3x=9\ssi x=3$
    La solution de l’équation est $3$.
    $\quad$

    [collapse]

    $\quad$
  7. Résoudre $(x+3)^2-8=0$.
    $\quad$
    Correction Question 7

    $(x+3)^2-8=0 \ssi x^2+6x+9-8=0\ssi
    x^2+6x+1=0$
    Le discriminant est $\Delta=36-4=32>0$
    Les solutions sont donc $\dfrac{-6-\sqrt{32}}{2}$ et $\dfrac{-6+\sqrt{32}}{2}$.
    $\quad$
    Autre méthode
    $(x+3)^2-8=0 \ssi (x+3)^2=8 \ssi x+3=\sqrt{8}$ ou $x+3=-\sqrt{8}$ $\ssi x=-3+\sqrt{8}$ ou $x=-3-\sqrt{8}$
    $\quad$

    [collapse]

    $\quad$
  8. Etudier le signe de $f(x)=4+3x$.
    $\quad$
    Correction Question 8

    $4+3x=0 \ssi 3x=-4 \ssi x=-\dfrac{4}{3}$
    $4+3x>0 \ssi 3x>-4 \ssi x>-\dfrac{4}{3}$
    Ainsi :
    – sur $\left]-\infty;-\dfrac{4}{3}\right[$ on a $f(x)<0$;
    – $f\left(-\dfrac{4}{3}\right)=0$;
    – sur $\left]-\dfrac{4}{3};+\infty\right[$ on a $f(x)>0$.
    $\quad$

    [collapse]

    $\quad$
  9. Etudier le signe de $h(x)=2x(5-2x)$.
    $\quad$
    Correction Question 9

    Un produit de facteurs est nul si, et seulement si, un de ses facteurs au moins est nul.
    $2x=0 \ssi x=0$
    $5-2x=0 \ssi -2x=-5 \ssi x=\dfrac{5}{2}$
    De plus $h(x)=10x-4x^2$
    $h$ est une fonction du second degré dont le coefficient principal est $a=-4<0$.
    Par conséquent :
    – sur $]-\infty;0[\cup\left]\dfrac{5}{2};+\infty\right[$ on a $h(x)<0$;
    – $h(0)=0$ et $h\left(\dfrac{5}{2}\right)=0$;
    – sur $\left]0;\dfrac{5}{2}\right[$ on a $h(x)>0$.
    $\quad$
    Remarque : On pouvait également réaliser un tableau de signes pour répondre à la question.
    $\quad$

    [collapse]

    $\quad$

Les sujets proviennent de la banque nationale de sujets sous licence