E3C – Séries technologiques – Fonctions – Janvier 2020

E3C – Fonctions

Séries technologiques

Soit $f$ la fonction définie sur $[0;60~000]$ par $f(x)=-0,01(x-5~000)(x-50~000)$.
Sa représentation graphique est donnée ci-dessous.

  1. a. Développe et réduire $f(x)$.
    $\quad$
    b. En quelle valeur de $x$ le maximum de$f$𝑓 est-il atteint?
    $\quad$
  2. En 2022, une entreprise de l’agroalimentaire bio prévoit de produire $60~ 000$ tonnes d’un nouveau produit et de le vendre $800$ € la tonne. On estime que toute la production sera vendue et que le coût total de production, en euros, de $x$ tonnes de produit est $C(x)=0,01x^2+250x+2~500~000$.
    a. Exprimer la recette en euros pour 𝑥 tonnes de produit vendues.
    $\quad$
    b. En déduire que le bénéfice en euros pour $x$ tonnes de produit fabriquées et vendues est $B(x) = -0,01x^2+550x-2~500~000$, pour tout $x$ de $[0 ; 60~000]$.
    Remarque : Il y avait une coquille dans l’expression de $B(x)$ dans l’énoncé original.
    $\quad$
    c. Quelle quantité de produit l’entreprise doit-elle produire et vendre pour réaliser un bénéfice maximal ? Combien vaut ce bénéfice ?
    $\quad$

$\quad$

Correction Exercice

  1. a.
    $\begin{align*} f(x)&=-0,01(x-5~000)(x-50~000)\\
    &=-0,01\left(x^2-50~000x-5~000x+250~000~000\right)\\
    &=-0,01\left(x^2-55~000x+250~000~000\right)\\
    &=-0,01x^2+550x-2~500~000\end{align*}$
    $\quad$
    b. Le maximum d’une fonction polynôme du second degré est atteint pour $x=-\dfrac{b}{2a}$ soit ici pour $x=\dfrac{550}{0,02}=27~500$.
    $\quad$
  2. a. Pour $x$ tonnes de produit vendues la recette est égale à $800x$.
    $\quad$
    b. Le bénéfice est alors :
    $\begin{align*} B(x)&=800x-C(x)\\
    &=800x-0,01x^2-250x-2~500~000\\
    &=-0,01x^2+550x-2~500~000\end{align*}$
    $\quad$
    c. On a ainsi $B(x)=f(x)$.
    L’entreprise doit donc produire et vendre $27~500$ tonnes de produit pour réaliser un bénéfice maximal.
    De plus $B(27~000)=5~062~500$
    Le bénéfice maximal est alors égale à $5~062~500$ €.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence