E3C – Séries technologiques – Fonctions – Janvier 2020

E3C – Fonctions

Séries technologiques

Un architecte a conçu un bassin aquatique comportant trois marches.
Le contour du bassin, représenté ci-contre dans une « vue du dessus », est constitué d’un demi-cercle de diamètre $[TO]$, de deux segments $[OV]$ et $[VW]$ et d’une courbe $\mathcal{C}$, reliant $T$ à $W$.
Les parties grisées figurent l’emplacement des trois marches.

La situation est représentée en annexe dans le repère orthonormal $(O,I ,J)$, dans lequel :

  • $V$, $W$ et $T$ sont les points de coordonnées respectives $(6,0)$, $(6,4)$ et $(0,8)$
  • $\mathcal{C}$ est la courbe représentative de la fonction $f$ définie sur $[0 ; 6]$ par $$f(x)=\dfrac{1}{27}x^3-\dfrac{1}{3}x^2+8$$
  1. On note $f’$ la dérivée de $f$. Montrer que pour tout réel $x$ de $[0;6]$, $f'(x) =\dfrac{1}{9}x(x-6)$.
    $\quad$
  2. En déduire les variations de la fonction $f$ sur l’intervalle $[0 ; 6]$.
    $\quad$
  3. Déterminer les coefficients directeurs des tangentes à la courbe $\mathcal{C}$ aux points d’abscisse $0$ et $6$. Que pouvez-vous en déduire graphiquement ?
    $\quad$
  4. Déterminer l’équation réduite de la tangente $\mathcal{D}$ à la courbe $\mathcal{C}$ au point d’abscisse $3$.
    $\quad$
  5. Tracer dans le repère orthonormal $(O,I ,J)$, fourni en annexe (à remettre avec la copie) les tangentes à la courbe $\mathcal{C}$ respectivement au point $T$, au point $W$ et au point d’abscisse $3$ puis tracer l’allure de la courbe $\mathcal{C}$.
    $\quad$

Annexe

$\quad$

$\quad$

Correction Exercice

  1. Pour tout réel $x\in[0;6]$ on a :
    $\begin{align*} f'(x)&=\dfrac{1}{27}\times 3x^2-\dfrac{1}{3}\times 2x \\
    &=\dfrac{1}{9}x^2-\dfrac{2}{3}x\\
    &=\dfrac{1}{9}x(x-6)\end{align*}$
    $\quad$
  2. Pour tout $x\in[0;6]$ on a donc $x\pg 0$ et $x-6\pp 0$. Ainsi $f'(x)\pp 0$.
    La fonction $f$ est donc décroissante sur l’intervalle $[0;6]$.
    $\quad$
  3. $f'(0)=0$ et $f'(6)=0$.
    Ainsi les coefficients directeurs des tangentes à la courbe $\mathcal{C}$ aux points d’abscisse $0$ et $6$ sont tous les deux nuls.
    Ces tangentes sont par conséquent parallèles à l’axe des abscisses.
    $\quad$
  4. On a $f'(3)=-1$ et $f(3)=6$.
    Ainsi une équation de $\mathscr{D}$ est $y=-1(x-3)+6$ soit $y=-x+9$.
    $\quad$
  5. On obtient le graphique suivant :$\quad$

 

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence