E3C – Séries technologiques – Probabilités – EC2

E3C – Probabilités

Séries technologiques

Dans une population, une personne sur $250$ est porteuse d’un gène qui entraîne, à l’âge adulte, une maladie handicapante.

  1. On choisit trois personnes au hasard dans cette population, qui est suffisamment grande pour que ce choix puisse être assimilé à trois tirages successifs avec remise.
    a. Justifier qu’il s’agit de la répétition de trois épreuves aléatoires et indépendantes de Bernoulli dont on donnera le paramètre.
    $\quad$
    b. Construire un arbre pondéré représentant la situation.
    $\quad$
    c. En déduire la probabilité qu’au moins une personne parmi les trois soit porteuse du gène.
    $\quad$
  2. On teste des personnes au hasard dans cette population jusqu’à ce qu’on obtienne une personne porteuse du gène.
    On veut modéliser cette expérience à l’aide d’une fonction qui retourne le nombre de personnes à tester avant d’en trouver une porteuse du gène.
    a. Compléter sur l’annexe, à remettre avec la copie, le programme écrit en langage Python.
    $\quad$
    b. Que permet de conclure l’affichage donné par l’instruction suivante écrite en langage Python ?
    $$\begin{array}{l}
    \text{>>> malade}\textcolor{Mahogany}{()}\\
    \textcolor{Emerald}{575}\end{array}$$
    $\quad$

Annexe

$\begin{array}{rl}
1&\textcolor{blue}{\text{from }}\text{random }\textcolor{blue}{\text{import }} \text{randint}\\
2&\textcolor{blue}{\text{def }}\textcolor{Emerald}{\text{malade}}\textcolor{Mahogany}{():}\\
3&\hspace{1cm}\text{n}\textcolor{Mahogany}{=}\textcolor{Emerald}{1}\\
4&\hspace{1cm}\text{X}\textcolor{Mahogany}{=}\text{randint}\textcolor{Mahogany}{(}\textcolor{Emerald}{1}\textcolor{Mahogany}{,}\textcolor{Emerald}{250}\textcolor{Mahogany}{)}\\
5&\hspace{1cm} \textcolor{blue}{\text{while }}\text{X}\textcolor{Mahogany}{!=}\textcolor{Emerald}{1}\textcolor{Mahogany}{:}\\
6&\hspace{2cm}\text{X}\textcolor{Mahogany}{=}\text{………………}\\
7&\hspace{2cm}\text{n}\textcolor{Mahogany}{=}\text{………………}\\
8&\hspace{1cm} \textcolor{blue}{\text{return }}\text{n}
\end{array}$

$\quad$

$\quad$

Correction Exercice

  1. a. Le choix est assimilé à trois tirages successifs avec remise. Il s’agit de la répétition de trois épreuves aléatoires et indépendantes de Bernoulli de paramètres $p=\dfrac{1}{250}$.
    $\quad$
    b. On appelle $G$ l’événement “la personne est porteuse du gène”.
    On obtient l’arbre pondéré suivant :

    $\quad$
    c. La probabilité qu’aucune personne ne soit porteuse du gène est $\left(\dfrac{249}{250}\right)^3$.
    Par conséquent la probabilité qu’au moins une personne parmi les trois soit porteuse du gène est : $1-\left(\dfrac{249}{250}\right)^3$
    $\quad$

  2. a. On obtient le programme suivant :
    $\begin{array}{rl}
    1&\textcolor{blue}{\text{from }}\text{random }\textcolor{blue}{\text{import }} \text{randint}\\
    2&\textcolor{blue}{\text{def }}\textcolor{Emerald}{\text{malade}}\textcolor{Mahogany}{():}\\
    3&\hspace{1cm}\text{n}\textcolor{Mahogany}{=}\textcolor{Emerald}{1}\\
    4&\hspace{1cm}\text{X}\textcolor{Mahogany}{=}\text{randint}\textcolor{Mahogany}{(}\textcolor{Emerald}{1}\textcolor{Mahogany}{,}\textcolor{Emerald}{250}\textcolor{Mahogany}{)}\\
    5&\hspace{1cm} \textcolor{blue}{\text{while }}\text{X}\textcolor{Mahogany}{!=}\textcolor{Emerald}{1}\textcolor{Mahogany}{:}\\
    6&\hspace{2cm}\text{X}\textcolor{Mahogany}{=}\text{randint}\textcolor{Mahogany}{(}\textcolor{Emerald}{1}\textcolor{Mahogany}{,}\textcolor{Emerald}{250}\textcolor{Mahogany}{)}\\
    7&\hspace{2cm}\text{n}\textcolor{Mahogany}{=}\text{n}\textcolor{Mahogany}{+}\textcolor{Emerald}{1}\\
    8&\hspace{1cm} \textcolor{blue}{\text{return }}\text{n}
    \end{array}$
    $\quad$
    b. D’après l’affichage, il faut donc tester $575$ personnes pour obtenir une personne porteuse du gène.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence