E3C – Séries technologiques – Probabilités – Janvier 2020

E3C – Probabilités

Séries technologiques

L’annexe est à rendre avec la copie

Pour contacter une compagnie d’assurance, deux possibilités sont offertes : par mail ou par téléphone. Le responsable du pôle relation client décide de réaliser une enquête afin de savoir si les clients qui contactent la compagnie sont satisfaits.
À l’issue de l’enquête, réalisée auprès de 1000 clients qui ont contacté l’agence, les résultats sont les suivants :

  • $370$ ont envoyé un mail à l’agence,
  • parmi ceux-ci, $90 \%$ se sont déclarés satisfaits du traitement de leur demande,
  • parmi les clients qui ont téléphoné, $20 \%$ ont déclaré qu’ils n’étaient pas satisfaits de l’accueil.

On interroge au hasard un client. On considère les évènements suivants :

  • $M$ : Le client a contacté l’agence par mail,
  • $S$ : Le client est satisfait.

Les probabilités seront arrondies à $10^{-4}$, si nécessaire.

  1. Donner la valeur des probabilités: $P(M)$, $P_M(S)$ et $P_{\conj{M}}(S)$.
    $\quad$
  2. Compléter le tableau représentant la situation donnée en annexe.
    $\quad$
  3. Calculer la probabilité que le client ait envoyé un mail et qu’il ait été satisfait.
    $\quad$
  4. Le responsable a pour objectif qu’il y ait moins de $10\%$ des clients non satisfaits par le contact qu’ils ont eu. Cet objectif est-il atteint ?
    $\quad$
  5. Sachant que le client a été satisfait, quelle est la probabilité qu’il ait contacté l’agence par mail ?
    $\quad$

Annexe

$$\begin{array}{|c|c|c|c|}
\hline
&\begin{array}{l}\textbf{Contact par}\\\textbf{mail}\\
\boldsymbol{(M)}\end{array}&\begin{array}{l}\textbf{Contact par}\\\textbf{téléphone}\\
\boldsymbol{\left(\conj{M}\right)}\end{array}&\textbf{Total}\\
\hline
\textbf{Satisfait }\boldsymbol{(S)}\rule[-7pt]{0pt}{20pt}&&&\\
\hline
\textbf{Insatisfait }\boldsymbol{\left(\conj{S}\right)}\rule[-7pt]{0pt}{20pt}&&&\\
\hline
\textbf{Total}\rule[-7pt]{0pt}{20pt}&&&\phantom{1234}\boldsymbol{1~000}\phantom{1234}\\
\hline
\end{array}$$

$\quad$

$\quad$

Correction Exercice

  1. On a $P(M)=\dfrac{370}{1~000}=0,37$, $P_M(S)=0,9$ et  $P_{\conj{M}}(S)=1-0,2=0,8$.
    $\quad$
  2. On obtient le tableau suivant :
    $$\begin{array}{|c|c|c|c|}
    \hline
    &\begin{array}{l}\textbf{Contact par}\\\textbf{mail}\\
    \boldsymbol{(M)}\end{array}&\begin{array}{l}\textbf{Contact par}\\\textbf{téléphone}\\
    \boldsymbol{\left(\conj{M}\right)}\end{array}&\textbf{Total}\\
    \hline
    \textbf{Satisfait }\boldsymbol{(S)}\rule[-7pt]{0pt}{20pt}&333&504&837\\
    \hline
    \textbf{Insatisfait }\boldsymbol{\left(\conj{S}\right)}\rule[-7pt]{0pt}{20pt}&37&126&163\\
    \hline
    \textbf{Total}\rule[-7pt]{0pt}{20pt}&370&630&\phantom{1234}\boldsymbol{1~000}\phantom{1234}\\
    \hline
    \end{array}$$
    $\quad$
  3. On veut calculer :
    $\begin{align*} P(M\cap S)&=\dfrac{333}{1~000} \\
    &=0,333\end{align*}$
    La probabilité que le client ait envoyé un mail et qu’il ait été satisfait est égale à $0,333$.
    $\quad$
  4. On a $P\left(\conj{S}\right)=\dfrac{163}{1~000}>0,1$.
    L’objectif n’est donc pas atteint.
    $\quad$
  5. On veut calculer :
    $\begin{align*} P_S(M)&=\dfrac{333}{837}\\
    &\approx 0,397~8\end{align*}$
    La probabilité que le client ait contacté l’agence par mail sachant qu’il a été satisfait est environ égale à $0,397~8$.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence