E3C2 – Spécialité maths – Fonctions – 2020

Fonctions

E3C2 – 1ère

Soit $h$ la fonction définie sur $[0 ; 26]$ par : $h(x)=-x^3+30x^2-108x-490$.

  1. Soit $h’$ la fonction dérivée de $h$. Exprimer $h'(x)$ en fonction de $x$.
    $\quad$
  2. On note $C$ la courbe représentative de $h$ et $C’$ celle de $h’$.
    a. Identifier $C$ et $C’$ sur le graphique orthogonal ci-dessous parmi les trois courbes $C_1$, $C_2$ et $C_3$ proposées.
    $\quad$
    b. Justifier le choix pour $C’$.$\quad$
  3. Soit $(T)$ la tangente à $C$ au point $A$ d’abscisse $0$. Déterminer son équation réduite.
    $\quad$
  4. Étudier le signe de $h'(x)$ puis dresser le tableau de variation de la fonction $h$ sur $[0; 26]$.
    $\quad$

$\quad$

Correction Exercice

  1. La fonction $h$ est dérivable sur $[0;26]$ en tant que fonction polynôme.
    Pour tout réel $x$ appartenant à $[0;26]$ on a :
    $\begin{align*} h'(x)&=-3x^2+30\times 2x-108 \\
    &=-3x^2+60x-108\end{align*}$
    $\quad$
  2. a. et b. On a $h(0)=490$.
    C’est par conséquent la courbe $C_2$ qui représente la fonction $h$.
    Le coefficient principal de $h'(x)$ est $a=-3<0$. $h’$ est donc représentée par la courbe $C_1$.
    $\quad$
    Remarque : La fonction $h$ est définie sur $[0;26]$ alors que les courbes laissent supposer qu’elles représentent des fonctions définies sur $\R$!
    $\quad$
  3. Une équation de la la droite $(T)$ est de la forme $y=f'(0)(x-0)+f(0)$
    Or $f(0)=-490$ et $f'(0)=-108$
    Une équation de $(T)$ est donc $y=-108x-490$.
    $\quad$
  4. On étudie le signe de $-3x^2+60x-108$.
    C’est un polynôme du second degré donc le coefficient principal est $a=-3$.
    Son discriminant est :
    $\begin{align*} \Delta&=60^2-4\times (-3)\times (-108)\\
    &=2~304\\
    &>0\end{align*}$
    Il possède donc deux racines réelles :
    $\begin{align*} x_1&=\dfrac{-60-\sqrt{2~304}}{-6} \\
    &=18\end{align*}$ $\quad$ et $\quad$ $\begin{align*} x_1&=\dfrac{-60+\sqrt{2~304}}{-6} \\
    &=2\end{align*}$
    On obtient donc le tableau de variations suivant :

    $\quad$
    Remarque : L’énoncé original demander d’étudier la fonction sur l’intervalle $[0;30]$ !
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence