E3C2 – Spécialité maths – Probabilités – 2020

Probabilités

E3C2 – 1ère

Une entreprise fabrique des jeux en bois. Avant sa commercialisation, chaque jeu est soumis à deux contrôles : un contrôle de peinture et un contrôle de solidité.

Après un très grand nombre de vérifications, on constate que :

  • $8 \%$ des jeux ont un défaut de peinture,
  • parmi les jeux qui n’ont pas de défaut de peinture, $5 \%$ ont un défaut de solidité,
  • $2 \%$ des jeux présentent les deux défauts.

On choisit au hasard un jeu parmi ceux fabriqués par l’entreprise. On note :

  • $T$ l’événement : « le jeu a un défaut de peinture. »
  • $S$ l’événement : « le jeu a un défaut de solidité. »
  1. Démontrer que $P_T(S) = 0,25$.
    $\quad$
  2. Recopier et compléter l’arbre pondéré de probabilité ci-dessous traduisant les données de l’énoncé.

    $\quad$
  3. Démontrer que la probabilité que le jeu choisi au hasard n’ait pas de défaut de solidité est égale à $0,934$.
    $\quad$
  4. Les jeux qui présentent un défaut de solidité sont détruits. Dans cette question, on leur attribuera un prix de vente de $0$ €.
    Les jeux ne présentant aucun défaut sont vendus $14$ € chacun.
    Les autres jeux sont vendus $9$ € chacun.
    $\quad$
    On note $X$ la variable aléatoire qui donne le prix de vente, en euros, d’un jeu.
    a. Recopier et compléter le tableau ci-dessous donnant, pour chaque valeur $x_i$ de $X$, la probabilité de l’événement $\left\{X=x_i\right\}$.
    $$\begin{array}{|c|c|c|c|}
    \hline
    x_i&0&9&14\\
    \hline
    P\left(X=x_i\right)&\phantom{1234}&\phantom{1234}&\phantom{1234}\\
    \hline
    \end{array}$$
    $\quad$
    b. Quel est le prix de vente moyen d’un jeu fabriqué par cette entreprise ?
    On arrondira le résultat au centime d’euro.
    $\quad$

$\quad$

Correction Exercice

  1. On a :
    $\begin{align*} P(T\cap S)=P(T)\times P_T(S)&\ssi 0,02=0,08P_T(S)\\
    &\ssi P_T(S)=0,25\end{align*}$
    $\quad$
  2. On obtient l’arbre pondéré :
    $\quad$
  3. $T$ et $\conj{T}$ forment un système complet d’événements fini.
    D’après la formule des probabilités totales on a :
    $\begin{align*} P\left(\conj{S}\right)&=P\left(T\cap \conj{S}\right)+P\left(\conj{T}\cap \conj{S}\right) \\
    &=0,08\times 0,75+0,92\times 0,95\\
    &=0,934\end{align*}$
    La probabilité que le jeu choisi au hasard n’ait pas de défaut de solidité est égale à $0,934$.
    $\quad$
  4. a. On obtient le tableau suivant :
    $$\begin{array}{|c|c|c|c|}
    \hline
    x_i&0&9&14\\
    \hline
    P\left(X=x_i\right)&0,066&0,06&0,874\\
    \hline
    \end{array}$$
    $P(X=0)=1-0,934=0,066$
    $P(X=14)=0,92\times 0,95=0,874$
    $P(X=9)=1-(0,066+0,874)=0,06$
    $\quad$
    Remarque : On peut calculer $P(X=9)$ directement.
    $\begin{align*} P(X=9)&=P\left(T\cap \conj{S}\right) \\
    &=P(T)-P(T\cap S) \\
    &=0,08-0,02\\
    &=0,06\end{align*}$
    $\quad$
    b. L’espérance mathématique de la variable aléatoire $X$ est :
    $\begin{align*} E(X)&=0\times 0,066+9\times 0,06+14\times 0,874 \\
    &=12,776\end{align*}$
    Le prix de vente moyen d’un jeu fabriqué par cette entreprise est d’environ $12,78$ €.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence