E3C2 – Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Ce QCM comprend 5 questions.
Pour chacune des questions, une seule des quatre réponses proposées est correcte.
Pour chaque question, indiquer le numéro de la question et recopier sur la copie la lettre correspondante à la réponse choisie.
Aucune justification n’est demandée mais il peut être nécessaire d’effectuer des recherches au brouillon pour aider à déterminer la réponse.
Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une question sans réponse n’apporte ni ne retire de point.

Question 1

L’arbre pondéré ci-dessous représente une situation où $A$, $B$, $C$ et $D$ sont des évènements d’une expérience aléatoire :

La probabilité de l’événement $D$ est égale à :

a. $0,06$
b. $0,8$
c. $0,5$
d. $0,172$

$\quad$

Correction Question

On a
$\begin{align*} P(C)&=1-(0,12+0,24)\\
&=0,64\end{align*}$
$P_A(D)=0,5$
$\begin{align*} P_B(D)&=1-0,8\\
&=0,2\end{align*}$
$\begin{align*} P_C(D)&=1-0,9\\
&=0,1\end{align*}$
$A$, $B$ et $C$ forment un système complet d’événements fini.
D’après la formule des probabilités totales on a :
$\begin{align*} P(D)&=P(A\cap D)+P(B\cap D)+P(C \cap D)\\
&=0,12\times 0,5+0,24\times 0,2+0,64\times 0,1\\
&=0,172\end{align*}$

Réponse d

$\quad$

[collapse]

$\quad$

Question 2

L’ensemble des solutions réelles de l’inéquation $-2x^2+5x+3<0$ est :

a. $\left]-3;\dfrac{1}{2}\right[$
b. $]-\infty;-3[\cup\left]\dfrac{1}{2};+\infty\right[$
c. $\left]-\infty;-\dfrac{1}{2}\right[\cup ]3;+\infty[$
d. $\left]-\dfrac{1}{2};3\right[$

$\quad$

Correction Question 2

Le discriminant du polynôme du second degré est :
$\begin{align*} \Delta&=(-5)^2-4\times (-2)\times 3 \\
&=49\\
&>0\end{align*}$
Le polynôme possède donc deux racines réelles :
$\begin{align*} x_1&=\dfrac{5-\sqrt{49}}{-4}\\
&=\dfrac{1}{2}\end{align*}$ $\quad$ et $\quad$ $\begin{align*} x_2&=\dfrac{5+\sqrt{49}}{-4}\\
&=-3\end{align*}$

Le coefficient principal est $a=-2<0$.
Par conséquent l’ensemble solution de l’inéquation $-2x^2+5x+3<0$ est $]-\infty;-3[\cup\left]\dfrac{1}{2};+\infty\right[$

Réponse b

$\quad$

[collapse]

$\quad$

Question 3

On considère la droite $\mathcal{D}$ d’équation $2x-8y+1=0$
Les coordonnées d’un vecteur normal à $\mathcal{D}$ sont :

a. $\begin{pmatrix} 1\\-4\end{pmatrix}$
b. $\begin{pmatrix} 8\\-2\end{pmatrix}$
c. $\begin{pmatrix} -8\\2\end{pmatrix}$
d. $\begin{pmatrix} -4\\1\end{pmatrix}$

$\quad$

Correction Question 3

Un vecteur normal à la droite $\mathcal{D}$ est $\vec{n}\begin{pmatrix}2\\-8\end{pmatrix}$.
Par conséquent le vecteur $\dfrac{1}{2}\vec{n}\begin{pmatrix} 1\\-4\end{pmatrix}$ est également un vecteur normal à la droite $\mathcal{D}$.

Réponse a

$\quad$

[collapse]

$\quad$

Question 4

Dans un repère orthonormé, l’équation du cercle de centre $A(-2 ; -4)$ et de rayon $2$ est :

a. $x^2-4x+y^2-8y+16=0$
b. $x^2+4x+y^2+8y+16=0$
c. $x^2-4x+y^2-8y+18=0$
d. $x^2+4x+y^2+8y+18=0$

$\quad$

Correction Question 4

Une équation de cercle est
$\begin{align*} &\left(x-(-2)\right)^2+\left(y-(-4)\right)^2=2^2\\
\ssi~& (x+2)^2+(y+4)^2-4=0 \\
\ssi~& x^2+4x+4+y^2+8y+16-4=0\\
\ssi~& x^2+4x+y^2+8y+16=0\end{align*}$

Réponse b

$\quad$

[collapse]

$\quad$

Question 5

On considère la suite $\left(u_n\right)$ définie par :
$u_0=1$ et pour tout entier naturel non nul $n$, $u_{n+1}=u_n+2n-3$.

a. $u_1=0$
b. $\left(u_n\right)$ est arithmétique
c. $u_3=-2$
d. $\left(u_n\right)$ est décroissante

$\quad$

Correction Question 5

$\begin{align*} u_1&=u_0+2\times 0-3 \\
&=1-3\\
&=-2\end{align*}$

$\begin{align*} u_2&=u_1+2\times 1-3 \\
&=-2+2-3\\
&=-3\end{align*}$

$\begin{align*} u_3&=u_2+2\times 2-3 \\
&=-3+4-3\\
&=-2\end{align*}$

Réponse c

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence