E3C2 – Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Ce QCM comprend 5 questions. Pour chacune des questions, une seule des quatre réponses proposées est correcte. Les questions sont indépendantes. Pour chaque question, indiquer le numéro de la question et recopier sur la copie la lettre correspondante à la réponse choisie. Aucune justification n’est demandée, cependant des traces de recherche au brouillon peuvent aider à trouver la bonne réponse. Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une question sans réponse n’apporte ni ne retire de point.

Question 1

Pour tout réel $x$, l’expression $\e^x\times \e^{x+2}$ est égale à :

a. $\e^{2x+2}$
b. $\e^{x^2+2}$
c. $\e^{\frac{x}{x+2}}$
d. $\e^{x^2+2x}$

$\quad$

Correction Question 1

Pour tout réel $x$ on a :
$\begin{align*} \e^x\times \e^{x+2}&=\e^{x+x+2}\\
&=\e^{2x+2}\end{align*}$

Réponse a

$\quad$

[collapse]

$\quad$

Question 2

Soit $g$ une fonction définie et dérivable en $1$. Dans un repère du plan, une équation de la tangente à la courbe de la fonction $g$ au point d’abscisse $1$ est :

a. $y=g(1)\times (x-1)-g'(1)$
b. $y=g'(1)\times (x-1)+g(1)$
c. $y=g'(1)\times (x+1)-g(1)$
d. $y=g(1)\times (x+1)+g'(1)$

$\quad$

Correction Question 2

Une équation de la tangente à la courbe de la fonction $g$ au point d’abscisse $1$ est $y=g'(1)\times (x-1)+g(1)$.

Réponse b

$\quad$

[collapse]

$\quad$

Question 3

Le plan est muni d’un repère $\Oij$. On considère la droite $(d)$ de vecteur directeur $\vec{u}(4 ; 7)$ et passant par le point $A(-2 ; 3)$. Une équation cartésienne de la droite $(d)$ est :

a. $-7x+4y-26=0$
b. $4x+7y-13=0$
c. $-7x+4y+26=0$
d. $4x-7y+29=0$

$\quad$

Correction Question 3

Un vecteur directeur de $(d)$ est $\vec{u}(4 ; 7)$.
Une équation cartésienne de $(d)$ est donc de la forme $7x-4y+c=0$.
Le point $A(-2;3)$ appartient à la droite.
Par conséquent $-14-12+c=0 \ssi c=26$
Une équation cartésienne de la droite $(d)$ est donc $7x-4y+26=0$ ou encore $-7x+4y-26=0$.

Réponse a

$\quad$

[collapse]

$\quad$

Question 4

$t$ est un réel. On sait que $\cos(t)=\dfrac{2}{3}$. Alors $\cos(4+4\pi)+\cos(-t)$ est égal à :

a. $-\dfrac{4}{3}$
b. $0$
c. $\dfrac{4}{3}$
d. $\dfrac{2}{3}$

$\quad$

$\quad$

Correction Question 4

$\cos(t)=\dfrac{2}{3}$ donc $\cos(-t)=\dfrac{2}{3}$
et
$\begin{align*} \cos(t+4\pi)&=\cos(t+2\times 2\pi)\\
&=\cos(t) \\
&=\dfrac{2}{3}\end{align*}$
Ainsi $\cos(4+4\pi)+\cos(-t)=\dfrac{4}{3}$.

Réponse c

$\quad$

[collapse]

$\quad$

Question 5

On considère, dans un repère du plan, la parabole $(P)$ d’équation :
$y = -x^2+6x-9$. La parabole $(P)$ admet :

a. aucun point d’intersection avec l’axe des abscisses
b. un seul point d’intersection avec l’axe des abscisses
c. deux points d’intersection avec l’axe des abscisses
d. trois points d’intersection avec l’axe des abscisses

$\quad$

Correction Question 5

On veut résoudre l’équation :
$\begin{align*} -x^2+6x-9=0 &\ssi x^2-6x+9=0 \\
&\ssi (x-3)^2=0\\
&\ssi x=3\end{align*}$

Réponse b

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence