Exercices – ECG – Probabilités

Probabilités

Terminale vers ECG

Tous les exercices pour réviser l’été avant d’entrer en CPGE ECG se trouvent .

À faire sans calculatrice.

Exercice 1

On s’intéresse à la clientèle d’un musée.
Chaque visiteur peut acheter son billet sur internet avant sa visite ou l’acheter aux caisses du musée à son arrivée.
Pour l’instant, la location d’un audioguide pour la visite n’est possible qu’aux caisses du musée. Le directeur s’interroge sur la pertinence de proposer la réservation des audioguides sur internet. Une étude est réalisée. Elle révèle que :

  • $70 \%$ des clients achètent leur billet sur internet ;
  • parmi les clients achetant leur billet sur internet, $35 \%$ choisissent à leur arrivée au musée une visite avec un audioguide ;
  • parmi les clients achetant leur billet aux caisses du musée, $55 \%$ choisissent une visite avec un audioguide.

On choisit au hasard un client du musée. On considère les événements suivants :

  • $A$ : « Le client choisit une visite avec un audioguide » ;
  • $B$ : « Le client achète son billet sur internet avant sa visite ».

Représenter la situation à l’aide d’un arbre pondéré.

Correction Exercice 1

On obtient l’arbre pondéré suivant :

$\quad$

[collapse]

$\quad$

$\quad$

Exercice 2

Lors d’une soirée, une chaîne de télévision a retransmis un match. Cette chaîne a ensuite proposé une émission d’analyse de ce match.
On dispose des informations suivantes :

  • $56 \%$ des téléspectateurs ont regardé le match ;
  • un quart des téléspectateurs ayant regardé le match ont aussi regardé l’émission ;
  • $16,2 \%$ des téléspectateurs ont regardé l’émission.

On interroge au hasard un téléspectateur. On note les événements :

  • $M$ : « le téléspectateur a regardé le match » ;
  • $E$ : « le téléspectateur a regardé l’émission ».

On note $x$ la probabilité qu’un téléspectateur ait regardé l’émission sachant qu’il n’a pas regardé le match.

  1. Construire un arbre pondéré illustrant la situation.
    $\quad$
  2. Déterminer la probabilité de $M\cap E$.
    $\quad$
  3. a. Vérifier que $P(E) = 0,44x + 0,14$.
    $\quad$
    b. En déduire la valeur de $x$.
    $\quad$
  4. Le téléspectateur interrogé n’a pas regardé l’émission. Quelle est la probabilité, arrondie à $10^{-2}$, qu’il ait regardé le match ?
    $\quad$
Correction Exercice 2
  1. On obtient l’arbre pondéré suivant :

    $\quad$
  2. On a :
    $\begin{align*} P(M\cap E)&=P(M)\times P_M(E) \\
    &=0,56\times 0,25\\
    &=0,14\end{align*}$
    $\quad$
  3. a. $M$ et $\conj{M}$ forment un système complet d’événements fini.
    D’après la formule des probabilités totales on a :
    $\begin{align*} P(E)&=P(M\cap E)+P\left(\conj{M}\cap E\right) \\
    &=0,14+0,44x\end{align*}$
    $\quad$
    b. On sait que $P(E)=0,162$
    Par conséquent $0,44x+014=0,162\ssi 0,44x=0,022\ssi x=0,05$.
    $\quad$
  4. On veut calculer :
    $\begin{align*} P_{\conj{E}}(M)&=\dfrac{P\left(\conj{E}\cap M\right)}{1-P(E)} \\
    &=\dfrac{0,75\times 0,56}{0,838}\\
    &\approx 0,50\end{align*}$
    La probabilité que le téléspectateur ait regardé le match sachant qu’il n’a pas regardé l’émission est environ égale à $0,50$.
    $\quad$

[collapse]

$\quad$