Bac S – Nouvelle Calédonie – Novembre 2018

Nouvelle Calédonie – Novembre 2018

Bac S – Mathématiques – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

Partie A – Conjecture graphique

  1. Graphiquement, une solution de l’équation $f(x)=g(x)$ est $1$.
    $\quad$
  2. Graphiquement, une solution de l’équation $g'(x)=0$ est $0,5$ (la dérivée s’annule en l’abscisse d’un sommet).
    $\quad$

 

Partie B – Étude de la fonction $\boldsymbol{g}$

  1. $\lim\limits_{x\to +\infty} -\dfrac{1}{x}=0$ et $\lim\limits_{X \to 0} \e^X=0$ donc$\lim\limits_{x \to +\infty} \e^{-1/x}=0$.
    De plus $\lim\limits_{x \to +\infty} \dfrac{1}{x^2}=0$.
    Donc, par produit de limites, $\lim\limits_{x \to +\infty} g(x)=0$.
    $\quad$
  2. a. Pour tout réel $x$ strictement positif on a :
    $\begin{align*} h(x)&=\ln\left(g(x)\right) \\
    &=\ln\left(\dfrac{1}{x^2}\e^{-1/x}\right) \\
    &=\ln\left(\dfrac{1}{x^2}\right)+\ln\left(\e^{-1/x}\right)\\
    &=-\ln\left(x^2\right)-\dfrac{1}{x} \\
    &=-2\ln(x)-\dfrac{1}{x} \\
    &=\dfrac{-2x\ln(x)-1}{x}\end{align*}$
    $\quad$
    b. $\lim\limits_{x\to 0^+} x\ln(x)=0$ donc $\lim\limits_{x\to 0^+}-2x\ln(x)-1=-1$.
    De plus, $\lim\limits_{x\to 0^+} \dfrac{1}{x}=+\infty$.
    Donc, par produit de limites, $\lim\limits_{x \to 0^+} h(x)=-\infty$.
    $\quad$
    c. Pour tout réel $x$ strictement positif on a $h(x)=\ln\left(g(x)\right) \ssi g(x)=\e^{h(x)}$.
    Or $\lim\limits_{x \to 0^+} h(x)=-\infty$ et $\lim\limits_{X \to -\infty} =0$.
    Donc, par composition de limite on a $\lim\limits_{x \to 0^+} g(x)=0$.
    $\quad$
  3. La fonction $g$ est dérivable sur $]0;+\infty[$ d’après l’énoncé.
    $\begin{align*} g'(x)&=\dfrac{-2}{x^3}\e^{-1/x}+\dfrac{1}{x^2}\times \dfrac{1}{x^2}\e^{-1/x} \\
    &=\left(\dfrac{-2}{x^3}+\dfrac{1}{x^4}\right)\e^{-1/x} \\
    &=\dfrac{(-2x+1)\e^{-1/x}}{x^4} \end{align*}$
    $\quad$
  4. La fonction exponentielle est strictement positive sur $\R$. De plus, pour tout $x>0$, on a $x^4>0$.
    Le signe de $g'(x)$ ne dépend donc que de celui de $1-2x$.
    Or $1-2x=0 \ssi x=1/2$ et $1-2x>0\ssi -2x>-1 \ssi x<\dfrac{1}{2}$.
    Ainsi $g'(x)<0$ sur l’intervalle $\left]\dfrac{1}{2};+\infty\right[$
    $g\left(\dfrac{1}{2}\right)=0$
    et $g'(x)>0$ sur l’intervalle $\left]0;\dfrac{1}{2}\right[$.
    Par conséquent, la fonction $g$ est croissante sur l’intervalle $\left]0;\dfrac{1}{2}\right[$ et décroissante sur l’intervalle $\left]\dfrac{1}{2};+\infty\right[$.
    $\quad$

Partie C – Aire des deux domaines compris entre les courbes $\boldsymbol{\mathscr{C}_f}$ et $\boldsymbol{\mathscr{C}_g}$

  1. $f(1)=\e^{-1}$ et $g(1)=\dfrac{1}{1^2}\e^{-1/1}=\e^{-1}$.
    Ainsi le point $A$ de coordonnées $\left(1;\e^{-1}\right)$ est un point d’intersection de $\mathscr{C}_f$ et $\mathscr{C}_g$.
    $\quad$
  2. Pour tout réel $a$ et $b$ strictement positifs on a :
    $\begin{align*} \ds \int_a^b \left(f(x)-g(x)\right)\dx &=\int_a^b \left(\e^{-x}-\dfrac{1}{x^2}\e^{-1/x}\right) \dx \\
    &=\left[-\e^{-x}-\e^{-1/x}\right]_a^b \\
    &=-\e^{-b}-\e^{-1/b}+\e^{-a}+\e^{-1/a} \\
    &=\e^{-a}+\e^{-1/a}-\e^{-b}-\e^{-1/b}\end{align*}$
    $\quad$
  3. $\lim\limits_{a \to 0} \e^{-a}=\e^0=1$
    $\lim\limits_{a \to 0^+} -\dfrac{1}{a}=-\infty$ et $\lim\limits_{x \to -\infty} \e^x=0$. Donc $\lim\limits_{a \to 0^+} \e^{-1/a}=0$.
    Par conséquent :
    $\begin{align*} \ds \lim\limits_{a \to 0^+} \int_a^1 \left(f(x)-g(x)\right)\dx&=1+0-\e^{-1}-\e^{-1} \\
    &=1-2\e^{-1}\end{align*}$
    $\quad$
  4. Cette égalité signifie que l’aire du domaine compris entre $\mathscr{C}_f$, $\mathscr{C}_g$ et les droites d’équation $x=0$ et $x=1$ est égale à celle du domaine compris entre $\mathscr{C}_g$ et  $\mathscr{C}_f$ pour tous les points dont l’abscisse est supérieure à $1$.
    $\quad$

Ex 2

Exercice 2

  1. a. Les vingt questions sont indépendantes. Les “tirages” sont aléatoires, identiques et possèdent deux issues :”Anselme répond correctement” ou non.
    La variable aléatoire $X$ suit donc la loi binomiale de paramètres $n=20$ et $p=0,25$.
    $\quad$
    b. À l’aide de la calculatrice on obtient $P(X\pg 10) =1-P(X\pp 9) \approx 0,014$.
    $\quad$
  2. D’après la formule des probabilités totales on a :
    $\begin{align*} p(M)&=p(M\cap A)+p(M\cap B)+p(M\cap C) \\
    &\approx \dfrac{1}{3}\times 0,014+\dfrac{1}{3}\times 0,588+\dfrac{1}{3}\times 0,962 \\
    &\approx 0,521 \end{align*}$
    Par conséquent
    $\begin{align*} p_M(B)&=\dfrac{p(M\cap B)}{p(M)} \\
    &\approx \dfrac{\dfrac{1}{3}\times 0,588}{0,521} \\
    &\approx 0,376 \end{align*}$
    La probabilité qu’il s’agisse de la copie de Barbara sachant que la note est supérieure ou égale à $10$ est d’environ $0,376$.
    $\quad$

Ex 3

Exercice 3

  1. Le point $P$ a pour coordonnées $(1;0;1)$.
    Le point $F$ a pour coordonnées $(2;0;2)$ et le point $G$ a pour coordonnées $(2;2;2)$.
    Ainsi le point $Q$ a pour coordonnées $\left(\dfrac{2+2}{2};\dfrac{0+2}{2};\dfrac{2+2}{2}\right)$ soit $(2;1;2)$.
    Dans la représentation paramétrique proposée :
    $\bullet$ Si $t=0$ alors $\begin{cases} x=1\\y=0\\z=1\end{cases}$ et on obtient les coordonnées du point $P$.
    $\bullet$ Si $t=1$ alors $\begin{cases} x=2\\y=1\\z=2\end{cases}$ et on obtient les coordonnées du point $Q$.
    Une représentation paramétrique de la droite $(PQ)$ est donc bien $\begin{cases} x=1+t\\y=t\\z=1+t\end{cases}, \quad t\in \R$.
    $\quad$
  2. a. Les coordonnées du point $I$ sont $(0;1;0)$ et celles du point $J$ sont $(2;1;0)$.
    Ainsi les coordonnées du vecteur $\vect{IJ}$ sont $(2;0;0)$.
    On considère le point $K’$ de coordonnées $(1+t;1;0)$.
    Alors les coordonnées du vecteur $\vect{MK’}$ sont $(0;1-t;-1-t)$.
    $\vect{IJ}.\vect{MK’}=0+0+0=0$.
    Les vecteurs $\vect{IJ}$ et $\vect{MK’}$ sont orthogonaux.
    $\quad$
    Une représentation paramétrique de la droite $(IJ)$ est $\begin{cases} x=r\\y=1\\z=0\end{cases}, \quad r\in \R$.
    En prenant $r=1+t$ on obtient le fait que $K’$ appartient à la droite $(IJ)$.
    $\quad$
    Le point $K’$ appartient à la droite $(IJ)$ et est tel que $(MK’)$ soit orthogonal à $(IJ)$. Un tel point est unique d’après l’énoncé.
    Par conséquent les coordonnées du point $K$ sont bien $(1+t;1;0)$.
    $\quad$
    b.
    $\begin{align*} MK&=\left\| \vect{MK}\right\| \\
    &=\sqrt{0^2+(1-t)^2+(-1-t)^2} \\
    &=\sqrt{1-2t+t^2+1+2t+t^2}\\
    &=\sqrt{2+2t^2}\end{align*}$
    $\quad$
  3. a. Le point $H$ a pour coordonnées $(0;2;2)$ et $y_H-z_H=2-2=0$. Donc $H$ appartient au plan d’équation $y-z=0$.
    Le point $G$ a pour coordonnées $(2;2;2)$ et $y_G-z_G=2-2=0$. Donc $G$ appartient au plan d’équation $y-z=0$.
    Le point $B$ a pour coordonnées $(2;0;0)$ et $y_B-z_B=0-0=0$. Donc $B$ appartient au plan d’équation $y-z=0$.
    Ainsi, une équation cartésienne du plan $(HGB)$ est $y-z=0$.
    $\quad$
    b. On note $L’$ le point de coordonnées $\left(1+t;\dfrac{1}{2}+t;\dfrac{1}{2}+t\right)$.
    $y_L-z_L=\dfrac{1}{2}+t-\dfrac{1}{2}-t=0$ donc $L’$ appartient au plan $(HGB)$.
    $\quad$
    Les coordonnées du vecteur $\vect{ML’}$ sont $\left(0;\dfrac{1}{2}+t-t;\dfrac{1}{2}+t-1-t\right)$ soit $\left(0;\dfrac{1}{2};-\dfrac{1}{2}\right)$.
    Un vecteur normal au plan $(HGB)$ est $\vec{n}(0;1;-1)$.
    Par conséquent $\vect{ML’}=\dfrac{1}{2}\vec{n}$.
    Le vecteur $\vect{ML’}$ est bien orthogonal au plan $(HGB)$.
    $\quad$
    Le point $L’$ appartient au plan $(HGB)$ et est tel que $(ML’)$ soit orthogonal à $(HGB)$. Un tel point est unique.
    Les coordonnées du point $L$ sont donc $\left(0;\dfrac{1}{2}+t-t;\dfrac{1}{2}+t-1-t\right)$.
    $\quad$
    c.
    $\begin{align*} ML&=\left\| \vect{ML}\right\| \\
    &=\sqrt{0^2+\left(\dfrac{1}{2}\right)^2+\left(-\dfrac{1}{2}\right)^2} \\
    &=\sqrt{\dfrac{1}{4}+\dfrac{1}{4}}\\
    &=\sqrt{\dfrac{1}{2}}\\
    &=\dfrac{\sqrt{2}}{2}\end{align*}$
    $\quad$
  4. On veut résoudre l’équation :
    $ ML=MK \ssi \sqrt{\dfrac{1}{2}}=\sqrt{2+2t^2}$
    Or, pour tout réel $t$ on a  $2+2t^2\pg 2>\dfrac{1}{2}$.
    Il n’existe donc pas de valeur de $t$ pour laquelle la distance $MK$ est égale à la distance $ML$.
    $\quad$

Ex 4 obl

Exercice 4

  1. Pour tout entier naturel $n$ on a :
    $\begin{align*} u_{n+1}&=z_{n+1}-\ic \\
    &=\dfrac{1}{3}z_n+\dfrac{2}{3}\ic-\ic \\
    &=\dfrac{1}{3}z_n-\dfrac{1}{3}\ic \\
    &=\dfrac{1}{3}\left(z_n-\ic\right)\\
    &=\dfrac{1}{3}u_n\end{align*}$
    $\quad$
  2. Démontrons, par récurrence sur $n$, que, pour tout entier naturel $n$ on a $u_n=\left(\dfrac{1}{3}\right)^n(1-\ic)$.
    Initialisation :
    Si $n=0$ alors $\left(\dfrac{1}{3}\right)^n(1-\ic)=1-\ic=z_0-\ic=u_0$.
    La propriété est vraie au rang $0$.
    $\quad$
    Hérédité : Supposons que la propriété soit vraie au rang $n$, c’est-à-dire que $u_n=\left(\dfrac{1}{3}\right)^n(1-\ic)$.
    Montrons qu’elle est encore vraie au rang $n+1$ c’est-à-dire que $u_{n+1}=\left(\dfrac{1}{3}\right)^{n+1}(1-\ic)$
    $\begin{align*} u_{n+1}&=\dfrac{1}{3}u_n \\
    &=\dfrac{1}{3}\times \left(\dfrac{1}{3}\right)^n(1-\ic)\\
    &=\left(\dfrac{1}{3}\right)^{n+1}(1-\ic) \end{align*}$
    La propriété est vraie au rang $n+1$.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Par conséquent, pour tout entier naturel $n$, on a $u_n=\left(\dfrac{1}{3}\right)^n(1-\ic)$.
    $\quad$
  3. a. Pour tout entier naturel $n$ on a :
    $\begin{align*}\left|u_n\right|&=\left|\left(\dfrac{1}{3}\right)^n(1-\ic)\right| \\
    &=\left(\dfrac{1}{3}\right)^n\left|1-\ic\right| \\
    &=\left(\dfrac{1}{3}\right)^n\times \sqrt{1^2+(-1)^2} \\
    &=\sqrt{2}\times \left(\dfrac{1}{3}\right)^n\end{align*}$
    $\quad$
    b. $-1 < \dfrac{1}{3} <1$ donc $\lim\limits_{n \to +\infty} \left(\dfrac{1}{3}\right)^n=0$.
    Par conséquent $\lim\limits_{n \to +\infty} \left|u_n\right|=0$
    C’est-à-dire $\lim\limits_{n \to +\infty} \left|z_n-\ic\right|=0$.
    $\quad$
    c. Géométriquement, cela signifie que, pour de grandes valeur de $n$, le point $A_n$ est très proche du point $C$.
    $\quad$
  4. a. On a $|1-\ic|=\sqrt{2}$ donc $1-\ic=\sqrt{2}\left(\dfrac{\sqrt{2}}{2}-\dfrac{\sqrt{2}}{2}\ic\right)=\sqrt{2}\e^{-\ic\pi/4}$.
    Par conséquent $u_n=\left(\dfrac{1}{3}\right)^n\times \sqrt{2}\e^{-\ic\pi/4}$.
    Un argument de $u_n$ est donc $-\dfrac{\pi}{4}$.
    $\quad$
    b. On considère deux entiers naturels non nuls $n$ et $m$.
    L’affixe du vecteur $\vect{B_0B_n}$ est
    $\begin{align*} c_n&=u_n-u_0\\
    &=\left(\dfrac{1}{3}\right)^n(1-\ic)-(1-\ic) \\
    &=(1-\ic)\times \left(\left(\dfrac{1}{3}\right)^n-1\right) \end{align*}$
    L’affixe du vecteur $\vect{B_0B_m}$ est
    $\begin{align*} d_n&=u_m-u_0\\
    &=\left(\dfrac{1}{3}\right)^m(1-\ic)-(1-\ic) \\
    &=(1-\ic)\times \left(\left(\dfrac{1}{3}\right)^m-1\right) \end{align*}$
    Par conséquent $d_n=\dfrac{\left(\dfrac{1}{3}\right)^m-1}{\left(\dfrac{1}{3}\right)^n-1}c_n$.
    Les vecteurs $\vect{B_0B_n}$ et $\vect{B_0B_m}$ sont colinéaires.
    Les points $B_0$, $B_n$ et $B_m$ sont donc alignés.
    $\quad$
    Autre méthode :
    On considère deux entiers naturels $n$ et $m$.
    $\begin{align*} \left(\vect{OB_n},\vect{OB_m}\right)&=\left(\vec{u},\vect{OB_m}\right)-\left(\vect{OB_n},\vec{u}\right) \\
    &=-\dfrac{\pi}{4}-\left(-\dfrac{\pi}{4}\right) ~~[2\pi] \\
    &=0~~[2\pi]\end{align*}$
    Les points $O$, $B_n$ et $B_M$ sont donc alignés.
    Cela signifie donc que tous les points $B_n$ appartiennent à la droite $\left(OB_0\right)$.
    $\quad$
    c. On a $u_0=1-\ic$. Une équation de la droite $\left(OB_0\right)$ est donc $y=-x$.
    Pour tout entier naturel $n$, il existe donc un réel $x_n$ tel que m’affixe du point $B_n$  soit $u_n=x_n(1-\ic)$.
    Or l’affixe du point $B_n$ est $u_n=z_n-\ic$.
    Par conséquent, en notant $a_n+\ic b_n$ la forme algébrique de $z_n$ on a :
    $\begin{align*} x_n(1-\ic)=a_n+\ic b_n-\ic &\ssi \begin{cases} a_n=x_n \\-x_n=b_n-1\end{cases} \\
    &\ssi \begin{cases} a_n=x_n \\b_n=-a_n+1\end{cases} \end{align*}$
    Le point $A_n$ appartient donc à la droite d’équation $y=-x+1$.
    $\quad$

 

Ex 4 spé

Exercice 4

Partie A

  1. a. On a :
    $u_0=0$, $u_1=1$, $u_2=1$, $u_3=2$, $u_4=3$, $u_5=5$, $u_6=8$, $u_7=13$, $u_8=21$, $u_9=34$ et $u_{10}=55$
    $\quad$
    b. Il semblerait que pour tout entier naturel $n$ le PGCD de $u_n$ et de $u_{n+1}$ soit égal à $1$.
    $\quad$
  2. a. Soit $n$ un entier naturel non nul.
    $\begin{align*} v_{n+1}&={u_{n+1}}^2-u_{n+2}\times u_n \\
    &={u_{n+1}}^2-\left(u_{n+1}+u_n\right)\times u_n \\
    &={u_{n+1}}^2-u_{n+1}\times u_n-{u_n}^2 \\
    &=-{u_n}^2+u_{n+1}\left(u_{n+1}-u_n\right)\end{align*}$
    Or, $u_{n+1}=u_n+u_{n-1} \ssi u_{n-1}=u_{n+1}-u_n$.
    Par conséquent $v_{n+1}=-{u_n}^2+u_{n+1}\times u_{n-1}=-v_n$.
    $\quad$
    b. La suite $\left(v_n\right)$ est donc géométrique de raison $-1$ et de premier terme $v_1={u_1}^2-u_2\times u_0=1$.
    Ainsi, pour tout entier naturel $n$ non nul on a $v_n=(-1)^{n-1}$.
    Par conséquent ${u_n}^2-u_{n+1}\times u_{n-1}=(-1)^{n-1}$.
    $\quad$
    c. Soit $n$ un entier naturel $n$ non nul.
    Si $n$ est impair alors $n-1$ est pair et
    ${u_n}^2-u_{n+1}\times u_{n-1}=1$
    $\ssi u_n\times u_n-u_{n+1}\times u_{n-1}=1$
    D’après le théorème de Bezout les nombres $u_n$ et $u_{n+1}$ sont premiers entre eux.
    $\quad$
    Si $n$ est pair alors $n-1$ est impair et
    ${u_n}^2-u_{n+1}\times u_{n-1}=-1$
    $\ssi -{u_n}^2+u_{n+1}\times u_{n-1}=1$
    $\ssi -u_n\times u_n++u_{n+1}\times u_{n-1}=1$
    D’après le théorème de Bezout les nombres $u_n$ et $u_{n+1}$ sont premiers entre eux.
    La conjecture de la question est donc vraie pour tout entier naturel $n$ non nul.
    De plus le PGCD de $0$ et $1$ est $1$. La conjecture est également vraie pour $n=0$.
    La conjecture de la question est donc vraie pour tout entier naturel $n$.
    $\quad$

Partie B

  1. On a $F^2=\begin{pmatrix}2&1\\1&1\end{pmatrix}$ et $F^3=\begin{pmatrix}3&2\\2&1\end{pmatrix}$.
    $\quad$
  2. Montrons cette propriété par récurrence.
    Initialisation : Si $n=1$ alors $F^1=\begin{pmatrix}1&1\\1&0\end{pmatrix}=\begin{pmatrix}u_2&u_1\\u_1&u_0\end{pmatrix}$.
    La propriété est vraie au rang $1$.
    $\quad$
    Hérédité : Supposons la propriété vraie au rang $n$, c’est à dire $F^n=\begin{pmatrix}u_{n+1}&u_n\\u_n&u_{n-1}\end{pmatrix}$.
    Montrons que la propriété est encore vraie au rang $n+1$, soit $F^{n+1}=\begin{pmatrix}u_{n+2}&u_{n+1}\\u_{n+1}&u_{n}\end{pmatrix}$.
    $\begin{align*} F^{n+1}&=F\times F_n \\
    &=\begin{pmatrix}1&1\\1&0\end{pmatrix}\times \begin{pmatrix}u_{n+1}&u_n\\u_n&u_{n-1}\end{pmatrix} \\
    &=\begin{pmatrix} u_{n+1}+u_n&u_n+u_{n-1}\\u_{n+1}&u_n\end{pmatrix} \\
    &=\begin{pmatrix} u_{n+2}&u_{n+1}\\u_{n+1}&u_n\end{pmatrix}\end{align*}$
    La propriété est vraie au rang $n+1$.
    $\quad$
    Conclusion : La propriété est vraie au rang $1$ et est héréditaire.
    Par conséquent, pour tout entier naturel $n$ non nul, on a $F_n=\begin{pmatrix} u_{n+1}&u_n\\u_n&u_{n-1}\end{pmatrix}$.
    $\quad$
  3. a. Soit $n$ un entier naturel non nul.
    $F^{2n+2}=F^{n+2+n}=F^{n+2}\times F_n$.
    Par conséquent :
    $\begin{pmatrix} u_{2n+3}&u_{2n+2}\\u_{2n+2}&u_{2n+1}\end{pmatrix}=\begin{pmatrix} u_{n+3}&u_{n+2}\\u_{n+2}&u_{n+1}\end{pmatrix}\times \begin{pmatrix} u_{n+1}&u_n\\u_n&u_{n-1}\end{pmatrix}$
    En identifiant les coefficients de la $2\ieme$ ligne, $1^{\text{ère}}$ colonne on obtient $u_{2n+2}=u_{n+2}\times u_{n+1}+u_{n+1}\times u_n$.
    $\quad$
    b. Pour tout entier naturel $n$ on a $u_{n+2}=u_{n+1}+u_n$ soit $u_{n+1}=u_{n+2}-u_n$
    Ainsi, pour tout entier naturel $n$ non nul, on a :
    $\begin{align*} u_{2n+2}&=u_{n+2}\times u_{n+1}+u_{n+1}\times u_n \\
    &=u_{n+1}\left(u_{n+2}+u_n\right) \\
    &=\left(u_{n+2}-u_n\right)\left(u_{n+2}+u_n\right) \\
    &={u_{n+2}}^2-{u_n}^2\end{align*}$
    $\quad$
  4. D’après la question précédente on a, pour tout entier naturel $n$ non nul, ${u_{n+2}}^2=u_{2n+2}+{u_n}^2$
    La solution de l’équation $2n+2=12$ est $n=5$.
    Par conséquent :
    ${u_7}^2=u_{12}+{u_5}^2$
    $\ssi 13^2=144+5^2$
    $\ssi 13^2=12^2+5^2$
    D’après la réciproque du théorème de Pythagore, un triangle dont les côtés mesurent $5$, $12$ et $13$ unités est rectangle.
    $\quad$

 

 

Énoncé

Télécharger (PDF, 72KB)

Si l’énoncé ne s’affiche pas directement rafraîchissez l’affichage.