E3C2 – Spécialité maths – Fonctions – 2020

Fonctions

E3C2 – 1ère

Une entreprise fabrique des pièces en acier, toutes identiques, pour l’industrie aéronautique.
Ces pièces sont coulées dans des moules à la sortie du four. Elles sont stockées dans un entrepôt dont la température ambiante est maintenue à $25$°C.
Ces pièces peuvent être modelées dès que leur température devient inférieure ou égale à $600$°C et on peut les travailler tant que leur température reste supérieure ou égale à $500$°C.
La température de ces pièces varie en fonction du temps.
On admet que la température en degré Celsius de ces pièces peut être modélisée par la fonction $f$ définie sur l’intervalle $[0 ; +\infty[$ par : $$f(t)=1é375\e^{-0,075t}+25~,$$ où $t$ correspond au temps, exprimé en heures, mesuré après la sortie du four.

  1. Calculer la température des pièces à la sortie du four.
    $\quad$
  2. Étudier le sens de variation de la fonction $f$ sur l’intervalle $[0 ; +\infty[$. Ce résultat était-il prévisible dans le contexte de l’exercice ?
    $\quad$
  3. Les pièces peuvent-elles être modelées $10$ heures après la sortie du four ? Après $14$ heures ?
    $\quad$
  4. On souhaite déterminer le temps minimum d’attente en heures après la sortie du four avant de pouvoir modeler les pièces.
    a. Compléter l’algorithme donné en annexe, qui est à rendre avec la copie, pour qu’il renvoie ce temps minimum d’attente en heure (arrondi par excès à $0,1$ près).
    $\quad$
    b. Déterminer ce temps minimum d’attente. On arrondira au dixième.
    $\quad$

Annexe

$$\begin{array}{l}
\text{from math import}\\
\text{def f(t):}\\
\hspace{1cm}\text{return 1375*exp(-0,075*t)+25}\\\\
\text{def seuil():}\\
\hspace{1cm} \text{t = }\ldots\ldots\\
\hspace{1cm} \text{temperature = }\ldots\ldots\\
\hspace{1cm} \text{while température > }\ldots\ldots :\\
\hspace{2cm} \text{t=t+0.1}\\
\hspace{2cm} \text{temperature =}\ldots\ldots\\
\hspace{1cm} \text{return t}\end{array}$$

L’énoncé original contenait une erreur dans la boucle while. Elle est corrigée ici.
$\quad$

$\quad$

Correction Exercice

  1. On a
    $\begin{align*} f(0)&=1~375\e^0+25 \\
    &=1~375+25\\
    &=1~400\end{align*}$
    La température des pièces à la sortie du four est de $1~400$ €.
    $\quad$
  2. La fonction $f$ est dérivable sur $[0;+\infty[$ en tant que composée et somme de fonctions dérivables sur $[0;+\infty[$.
    Pour tout réel $x\pg 0$ on a :
    $\begin{align*} f'(t)&=1~375 \times (-0,075)\e^{-0,075t} \\
    &=-103,125\e^{-0,075t}\end{align*}$
    La fonction exponentielle est strictement positive.
    Donc $f'(t)<0$ pour tout réel $x\pg 0$.
    Ainsi la fonction $f$ est strictement décroissante sur $[0;+\infty[$.
    Une fois sortie du four, la température de la pièce en acier baisse. Le résultat précédent était donc prévisible.
    $\quad$
  3. On a $f(10)\approx 675,5 > 600$
    Les pièces ne peuvent pas être modelées $10$h après la sortie du four.
    $f(14)\approx 506,2 \in[500;600]$
    Les pièces peuvent être modelées $14$h après la sortie du four.
    $\quad$
  4. a. On obtient l’algorithme suivant :
    $$\begin{array}{l}
    \text{from math import}\\
    \text{def f(t):}\\
    \hspace{1cm}\text{return 1375*exp(-0,075*t)+25}\\\\
    \text{def seuil():}\\
    \hspace{1cm} \text{t = t+0.1 }\\
    \hspace{1cm} \text{temperature = f(t)}\\
    \hspace{1cm} \text{while température > 600 :} \\
    \hspace{2cm} \text{t=t+0.1}\\
    \hspace{2cm} \text{temperature = f(t)}\\
    \hspace{1cm} \text{return t}\end{array}$$
    $\quad$
    b. On a $f(11,6)\approx 601,1$ et $f(11,7) \approx 596,8$
    Il faut donc attendre environ $11,7$ heures pour pouvoir modeler les pièces.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence