E3C2 – Spécialité maths – Fonctions – 2020

Fonctions

E3C2 – 1ère

On considère la fonction $f$ définie sur $[0;+\infty[$ par $f(x)=\dfrac{\e^x}{1+x}$.
On note $C_f$ la représentation graphique de $f$ dans un repère du plan.

  1. Déterminer les coordonnées du point $A$, point d’intersection de la courbe $C_f$ avec l’axe des ordonnées.
    $\quad$
  2. La courbe $C_f$ coupe-t-elle l’axe des abscisses ? Justifier la réponse.
    $\quad$
  3. On note $f’$ la dérivée de la fonction $f$ sur $[0; +\infty[$. Montrer que, pour tout réel $x$ de l’intervalle $[0;+\infty[$, $f'(x)=\dfrac{x\e^x}{(1+x)^2}$.
    $\quad$
  4. Étudier le signe de $f'(x)$ sur $[0; +\infty[$. En déduire le sens de variation de $f$ sur $[0; +\infty[$.
    $\quad$
  5. On note $T$ la tangente à $C_f$ au point $A$ d’abscisse $1,6$. La tangente $T$ passe-telle par l’origine du repère ? Justifier la réponse.
    $\quad$

$\quad$

Correction Exercice

  1. L’abscisse du point $A$ est $0$.
    $\begin{align*} f(0)&=\dfrac{e^0}{1+0} \\
    &=\dfrac{1}{1}\\
    &=1\end{align*}$
    Le point $A$ a donc pour coordonnées $(0;1)$.
    $\quad$
  2. La fonction exponentielle est strictement positive.
    Et pour tout réel $x\pg 0$ on a $1+x>0$.
    Par conséquent $f(x)>0$.
    La courbe $\mathscr{C_f}$ ne coupe donc pas l’axe des abscisses.
    $\quad$
  3. La fonction $f$ est dérivable sur $[0;+\infty[$ en tant que quotient de fonctions dérivables dont le dénominateur ne s’annule pas sur $[0;+\infty[$.
    Ainsi, pour tout réel $x \pg 0$ :
    $\begin{align*} f'(x)&=\dfrac{\e^x(1+x)-1\times \e^x}{(1+x)^2} \\
    &=\dfrac{(1+x-1)\e^x}{(1+x)^2} \\
    &=\dfrac{x\e^x}{(1+x)^2}\end{align*}$
    $\quad$
  4. Sur $[0;+\infty[$ on a $x\pg 0$, $\e^x>0$ et $1+x>0$
    Donc $f'(x)\pg 0$.
    La fonction $f$ est donc strictement croissante sur $[0;+\infty[$.
    $\quad$
  5. Une équation de $T$ est de la forme $y=f'(1,6)(x-1,6)+f(1,6)$
    Or $f(1,6)=\dfrac{\e^{1,6}}{2,6}$ et $f'(1,6)=\dfrac{1,6\e^{1,6}}{2,6^2}$
    Ainsi une équation de $T$ est $y=\dfrac{1,6\e^{1,6}}{2,6^2}(x-1,6)+\dfrac{\e^{1,6}}{2,6}$
    Soit $y=\dfrac{1,6\e^{1,6}}{2,6^2}x+\dfrac{0,04\e^{1,6}}{6,76}$
    L’ordonnée à l’origine de la droite $T$ n’est donc pas nulle.
    La droite $T$ ne passe par conséquent pas par l’origine du repère.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence