E3C2 – Spécialité maths – Fonctions – 2020

Fonctions

E3C2 – 1ère

Une entreprise fabrique $q$ milliers d’objets, $q\in [1; 20]$. Le coût total de fabrication, exprimé en euros en fonction de $q$, est donné par l’expression : $$C(q)=q^3-18q^2+750q+200$$

  1. a. Calculer le coût total de fabrication de $5~000$ objets.
    $\quad$
    b. Déterminer le coût moyen de fabrication d’un millier d’objets lorsqu’on fabrique $5~000$ objets.
    $\quad$
  2. Le coût moyen $C_M(q)$ de fabrication de $q$ milliers d’objets, exprimé en euros, est donné par l’expression : $$C_M(q)=\dfrac{C(q)}{q}=q^2-18q+750+\dfrac{200}{q}$$
    a. On note $C_M’$ la fonction dérivée, sur l’intervalle $[1; 20]$, de la fonction $C_M$.
    Montrer que, pour tout $q\in [1; 20]$, $$C_M'(q)=\dfrac{2(q-10)\left(q^2+q+10\right)}{q^2}$$
    $\quad$
    b. Étudier le signe de $C_M’$ et dresser le tableau de variation de la fonction $C_M$ sur l’intervalle $[1; 20]$.
    $\quad$
    c. Quel est le coût moyen minimal et pour quelle quantité d’objets est-il obtenu ?
    $\quad$

$\quad$

Correction Exercice

  1. a. On a :
    $\begin{align*} C(5)&=5^3-18\times 5^2+750\times 5+200\\
    &=3~625\end{align*}$
    Le coût total de fabrication de $5~000$ objets est de $3~625$ euris.
    $\quad$
    b. $\dfrac{C(5)}{5}=725$.
    Le coût moyen de fabrication d’un millier d’objets lorsqu’on fabrique $5~000$ objets est de $725$ euros.
    $\quad$
  2. a. La fonction $C_M$ est dérivable sur l’intervalle $[1;20]$ en tant que somme de fonctions dérivables sur cet intervalle.
    Pour tout réel $q\in[1;20]$ on a :
    $\begin{align*} C_M'(q)&=2q-18+200\times \left(-\dfrac{1}{q^2}\right) \\
    &=\dfrac{2q^3-18q^2-200}{q^2}\end{align*}$
    Or :
    $\begin{align*} &2(q-10)\left(q^2+q+10\right)\\
    =~&(2q-20)\left(q^2+q+10\right)\\
    =~&2q^3+2q^2+20q-20q^2-20q-200\\
    =~&2q^3-18q^2-200\end{align*}$
    Ainsi $C_M'(q)=\dfrac{2(q-10)\left(q^2+q+10\right)}{q^2}$.
    $\quad$
    b. Un carré étant positif, le signe de $C_M'(q)$ ne dépend que de celui de $(q-10)\left(q^2+q+10\right)$.
    $q-10=0 \ssi q=10$ et $q-10>0 \ssi q>10$
    Le discriminant de $q^2+q+10$ est :
    $\begin{align*} \Delta&=1^2-4\times 1\times 10\\
    &=-39\\
    &<10\end{align*}$
    Le coefficient principal du polynôme du second degré est $a=1>0$.
    On obtient donc le tableau de variations suivant :

    $\quad$
    c. Le coût moyen est minimal lorsque l’entreprise fabrique $10~000$ objets et vaut alors $690$ euros.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence