E3C2 – Spécialité maths – Fonctions – 2020

Fonctions

E3C2 – 1ère

Partie A

Étudier sur $\R$ le signe de $P(x)=-10x^2-40x+120$.
$\quad$

Partie B

On se place dans un repère orthonormé. La courbe $H$ représentée sur le graphique ci -dessous est l’ensemble des points de l’hyperbole d’équation : $$y=\dfrac{10x+4}{x+2}$$
avec $x$ appartenant à l’intervalle $[0;8]$.

Pour toute abscisse 𝑥 dans l’intervalle $[0; 8]$, on construit le rectangle $ABDE$ comme indiqué sur la figure. On donne les informations suivantes :

  • $A$ et $B$ sont sur l’axe des abscisses ;
  • $A$ est d’abscisse $x$ ;
  • $B$ et $D$ ont pour abscisse $8$ ;
  • $E$ appartient à la courbe $H$ ;
  • $D$ et $E$ ont la même ordonnée.

L’objectif de ce problème est de déterminer la ou les valeurs éventuelles $x$ de l’intervalle $[0; 8]$ correspondant à un rectangle $ABDE$ d’aire maximale.

  1. Déterminer l’aire du rectangle $ABDE$ lorsque $x = 0$.
    $\quad$
  2. Déterminer l’aire du rectangle $ABDE$ lorsque $x = 4$.
    $\quad$

On définit la fonction $f$ qui à tout réel $x$ de $[0; 8]$, associe l’aire du rectangle $ABDE$.
On admet que : $$f(x)=\dfrac{-10x^2+76x+32}{x+2}$$

  1. Répondre au problème posé.
    $\quad$

$\quad$

Correction Exercice

Partie A

$P(x)$ est un polynôme du second degré.
Son discriminant est :
$\begin{align*} \Delta&=(-40)^2-4\times (-10)\times 120\\
&=6~400\\
&>0\end{align*}$
Il possède donc deux racines réelles :
$\begin{align*} x_1&=\dfrac{40-\sqrt{6~400}}{-20} \\
&=2\end{align*}$ $\quad$ et $\quad$ $\begin{align*} x_2&=\dfrac{40+\sqrt{6~400}}{-20} \\
&=-6\end{align*}$

Le coefficient principal est $a=-10<0$.
Par conséquent :

  • $P(2)=P(-6)=0$;
  • $P(x)<0$ sur $]-\infty;-6[\cup]2;+\infty[$;
  • $P(x)>0$ sur $]-6;2[$.
    $\quad$

Partie B

  1. Si $x=0$ alors l’ordonnée du point $E$ est $\dfrac{4}{2}=2$.
    L’aire du rectangle $ABDE$ est donc égale à $8\times 2=16$.
    $\quad$
  2. Si $x=4$ alors l’ordonnée du point $E$ est $\dfrac{10\times 4+4}{4+2}=\dfrac{22}{3}$.
    L’aire du rectangle $ABDE$ est donc égale à $(8-4)\times \dfrac{22}{3}=\dfrac{88}{3}$.
    $\quad$
  3. La fonction $f$ est dérivable sur l’intervalle $[0;8]$ en tant que quotient de fonctions dérivables dont le dénominateur ne s’annule pas sur $[0;8]$.
    Pour tout réel $x$ appartenant à $[0;8]$ on a :
    $\begin{align*} f'(x)&=\dfrac{(-10\times 2x+76)(x+2)-\left(-10x^2+76x+32\right)\times 1}{(x+2)^2} \\
    &=\dfrac{-20x^2-40x+76x+152+10x^2-76x-32}{(x+2)^2}\\
    &=\dfrac{-10x^2-40x+120}{(x+2)^2}\\
    &=\dfrac{P(x)}{(x+2)^2}\end{align*}$
    Le signe de $f'(x)$ ne dépend donc que de celui de $P(x)$.
    Par conséquent, la fonction $f$ est croissante sur l’intervalle $[0;2]$ et décroissante sur l’intervalle $[2;8]$.
    L’aire du rectangle $ABDE$ est donc maximale quand $x=2$.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence