E3C2 – Spécialité maths – Géométrie repérée – 2020

Géométrie repérée

E3C2 – 1ère

Dans un repère orthonormé, on considère les points $A(-1 ; 3)$, $B(5 ; 0)$ et $C(9 ; 3)$.

  1. Déterminer une équation cartésienne de la droite $(AB)$.
    $\quad$
  2. Déterminer une équation cartésienne de la droite $D$ passant par le point $C$ et de vecteur normal $\vec{n}\begin{pmatrix}-1\\3\end{pmatrix}$.
    $\quad$
  3. Démontrer que les droites $D$ et $(AB)$ ne sont pas parallèles.
    $\quad$
    On admet que le point $E(3 ; 1)$ est le point d’intersection de ces deux droites.
  4. Les droites $D$ et $(AB)$ sont-elles perpendiculaires ?
    $\quad$
  5. On donne $AE = 2\sqrt{5}$ et $EC = 2\sqrt{10}$.
    Calculer la mesure en degrés de l’angle $\widehat{AEC}$.
    $\quad$

$\quad$

Correction Exercice

  1. Un vecteur directeur de la droite $(AB)$ est $\vect{AB}\begin{pmatrix}6\\-3\end{pmatrix}$.
    Ainsi une équation cartésienne de la droite $(AB)$ est de la forme $-3x-6y+c=0$.
    $A(-1;3)$ appartient à cette droite.
    Donc $3-18+c=0\ssi c=15$.
    Une équation cartésienne de la droite $(AB)$ est $-3x-6y+15=0$ ou encore $x+2y-5=0$.
    $\quad$
  2. Une équation cartésienne de la droite $D$ est de la forme $-x+3y+c$.
    $C(9;3)$ appartient à la droite $D$.
    Donc $-9+9+c=0\ssi c=0$.
    Une équation cartésienne de la droite $D$ est donc $-x+3y=0$.
    $\quad$
  3. Un vecteur directeur de la droite $D$ est $\vec{u}\begin{pmatrix}-3\\-1\end{pmatrix}$.
    Un vecteur directeur de la droite $(AB)$ est $\vect{AB}\begin{pmatrix}6\\-3\end{pmatrix}$.
    det$\left(\vec{u};\vect{AB}\right)=-3\times -3-(-1)\times 6=15\neq 0$.
    Ces vecteurs ne sont pas colinéaires.
    Par conséquent, les droites $D$ et $(AB)$ ne sont pas parallèles.
    $\quad$
  4. $\vect{AE}\begin{pmatrix}4;-2\end{pmatrix}$ et $\vect{CE}\begin{pmatrix}-6;-2\end{pmatrix}$.
    Par conséquent :
    $\begin{align*} \vect{AE}.\vect{CE}&=4\times (-6)+(-2)\times (-2) \\
    &=-24+4\\
    &=-20\\
    &\neq 0\end{align*}$
    Les droites $(D)$ et $(AB)$ ne sont donc pas perpendiculaires.
    Remarque : On pouvait calculer également $\vect{AB}.\vec{u}$ ou det$\left(\vec{n};\vect{AB}\right)$ mais on a besoin du produit scalaire $\vect{AE}.\vect{CE}$ à la question suivante.
    $\quad$
  5. On a $\vect{AE}.\vect{CE}=-20$
    et $\vect{AE}.\vect{CE}=AE\times EC\times \cos \widehat{AEC}$
    Par conséquent :
    $\begin{align*} &2\sqrt{5}\times 2\sqrt{10}\cos\widehat{AEC}=-20 \\
    \ssi~& \cos \widehat{AEC}=-\dfrac{20}{20\sqrt{2}} \\
    \ssi~& \cos \widehat{AEC}=-\dfrac{\sqrt{2}}{2}\end{align*}$
    Par conséquent $\widehat{AEC}=135$°
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence