E3C2 – Spécialité maths – Géométrie repérée – 2020

Géométrie repérée

E3C2 – 1ère

Le plan est muni d’un repère orthonormé $\Oij$.

On considère les points : $A(-1 ; -3)$, $B(1 ; 2)$ et $C(7 ; 1)$.

  1. Le triangle $ABC$ est-il isocèle en $B$ ?
    $\quad$
  2. Déterminer la valeur arrondie au dixième de degré de l’angle $\widehat{BAC}$.
    $\quad$
  3. On considère le point $H$ de coordonnées$ (2,6 ; -1,2)$.
    Le point $H$ est-il le projeté orthogonal du point B sur la droite $(AC)$ ?
    $\quad$

$\quad$

Correction Exercice

  1. On a :
    $\begin{align*} BA&=\sqrt{(-1-1)^2+(-3-2)^2} \\
    &=\sqrt{4+25}\\
    &=\sqrt{29}\end{align*}$
    $\begin{align*} BC&=\sqrt{(7-1)^2+(1-2)^2}\\
    &=\sqrt{36+1}\\
    &=\sqrt{37}\end{align*}$
    Par conséquent $BA\neq BC$ : le triangle $ABC$ n’est pas isocèle en $B$.
    $\quad$
  2. On a $\vect{AB}\begin{pmatrix}2\\5\end{pmatrix}$ et $\vect{AC}\begin{pmatrix}8\\4\end{pmatrix}$
    Ainsi :
    $\begin{align*} \vect{AB}.\vect{AC}&=2\times8+5\times 4\\
    &=36\end{align*}$
    $\quad$
    $\begin{align*}AC&=\sqrt{8^2+4^2}\\
    &=\sqrt{80}\end{align*}$
    On a également :
    $\begin{align*} \vect{AB}.\vect{AC}&=AB\times AC\times \cos \widehat{BAC}\\
    &=\sqrt{29}\times \sqrt{80}\cos \widehat{BAC}\end{align*}$
    Par conséquent $\sqrt{29}\times \sqrt{80}\cos \widehat{BAC}=36$
    Donc $\cos \widehat{BAC}=\dfrac{36}{\sqrt{29}\times \sqrt{80}}$
    Ainsi $\widehat{BAC}\approx 41,6$°
    $\quad$
  3. $\vect{AH}\begin{pmatrix}3,6\\1,8\end{pmatrix}$
    Montrons que les vecteurs $\vect{AC}\begin{pmatrix}8\\4\end{pmatrix}$ et $\vect{AH}\begin{pmatrix}3,6\\1,8\end{pmatrix}$ sont colinéaires.
    $\begin{align*}\det\left(\vect{AC}.\vect{AH}\right)&=8\times 1,8-4\times 3,6\\
    &=14,4-14,4\\
    &=0\end{align*}$
    Les deux vecteurs sont colinéaires. Le point $H$ appartient donc à la droite $(AC)$.
    Montrons maintenant que les vecteurs $\vect{AC}\begin{pmatrix}8\\4\end{pmatrix}$ et $\vect{BH}\begin{pmatrix}1,6\\-3,2\end{pmatrix}$ sont orthogonaux.
    $\begin{align*} \vect{AC}.\vect{BH}&=8\times 1,6+4\times (-3,2)\\
    &=12,8-12,8\\
    &=0\end{align*}$
    Les deux vecteurs sont orthogonaux.
    Par conséquent $H$ est le projeté orthogonal du point $B$ sur la droite $(AC)$.
    $\quad$

[collapse]

Les sujets proviennent de la banque nationale de sujets sous licence