E3C2 – Spécialité maths – Géométrie repérée – 2020

Géométrie repérée

E3C2 – 1ère

On appelle orthocentre d’un triangle le point de concours de ses trois hauteurs.

Dans le plan muni d’un repère orthonormé, on considère les points $A(-4; 10)$, $B(8; 16)$ , $C(8; -2)$, $H(2 ;10)$ et $K(5 ;7)$. (Voir figure ci-dessous)

  1. Montrer que $\vect{AB}.\vect{HC}=0$ et $\vect{AC}.\vect{HB}=0$
    $\quad$
  2. Que représente le point $H$ pour le triangle $ABC$ ?
    $\quad$
  3. Montrer que $K$ est le centre du cercle passant par les sommets du triangle $ABC$.
    $\quad$
  4. On admet que $G$, le centre de gravité du triangle $ABC$, est le point qui vérifie $\vect{AG}=\dfrac{2}{3}\vect{AM}$ où $M$ est le milieu du segment $[BC]$. Déterminer les coordonnées de $G$.
    $\quad$
  5. Montrer que les points $G$, $H$ et $K$ sont alignés.
    $\quad$

$\quad$

Correction Exercice

  1. On a $\vect{AB}\begin{pmatrix}12\\6\end{pmatrix}$ et $\vect{HC}\begin{pmatrix}6\\-12\end{pmatrix}$
    $\begin{align*} \vect{AB}.\vect{HC}&=12\times 6+6\times (-12)\\
    &=0\end{align*}$
    $\quad$
    On a $\vect{AC}\begin{pmatrix}12\\-12\end{pmatrix}$ et $\vect{HB}\begin{pmatrix}6\\6\end{pmatrix}$
    $\begin{align*} \vect{AC}.\vect{HB}&=12\times 6+(-12)\times 6\\
    &=0\end{align*}$
    $\quad$
  2. Ainsi $(AB)$ est perpendiculaires à $(HC)$ et $(AC)$ est perpendiculaire à $(HB)$.
    Les droites $(HC)$ et $(HB)$ sont donc respectivement les hauteurs du triangles $(ABC)$ issues des sommets $C$ et $B$.
    Par conséquent $H$ est l’orthocentre du triangle $ABC$.
    $\quad$
  3. On a :
    $\begin{align*} KA&=\sqrt{(-4-5)^2+(10-7)^2}\\
    &=\sqrt{(-9)^2+3^2}\\
    &=\sqrt{90}\end{align*}$
    $\begin{align*} KB&=\sqrt{8-5)^2+(16-7)^2} \\
    &=\sqrt{3^2+9^2}\\
    &=\sqrt{90}\end{align*}$
    $\begin{align*} KC&=\sqrt{(8-5)^2+(-2-7)^2}\\
    &=\sqrt{3^2+(-9)^2}\\
    &=\sqrt{90}\end{align*}$
    Le point $K$ est donc équidistant des sommets du triangle $ABC$. C’est par conséquent le centre du cercle circonscrit au triangle $ABC$.
    $\quad$
  4. Les coordonnées du point $M$ sont :
    $\begin{cases}x_M=\dfrac{8+8}{2}\\y_M=\dfrac{16+(-2)}{2}\end{cases}\ssi \begin{cases}x_M=8\\y_M=7\end{cases}$.
    Ainsi $M(8;7)$.
    On a donc $\vect{AM}\begin{pmatrix}12\\-3\end{pmatrix}$
    On a, en notant $G\left(x_G;y_G\right)$ :
    $\begin{align*} \vect{AG}=\dfrac{2}{3}\vect{AM}&\ssi \begin{cases} x_G+4=\dfrac{2}{3}\times 12 \\y_G-10=\dfrac{2}{3}\times (-3)\end{cases} \\
    &\ssi \begin{cases} x_G+4=8 \\y_G-10=-2\end{cases} \\
    &\ssi \begin{cases} x_G=4 \\y_G=8\end{cases} \end{align*}$
    $\quad$
  5. On a $\vect{GK}\begin{pmatrix}1\\-1\end{pmatrix}$ et $\vect{GH}\begin{pmatrix} -2\\2\end{pmatrix}$.
    Ainsi $\vect{GH}=-2\vect{GK}$.
    Ces deux vecteurs sont colinéaires. Les points $G$, $H$ et $K$ sont donc alignés.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence