E3C2 – Spécialité maths – Probabilités – 2020

Probabilités

E3C2 – 1ère

Lors des journées classées « rouges » selon Bison Futé, l’autoroute qui relie Paris à Limoges en passant par Orléans est surchargée.
Lors de ces journées classées « rouges », on a pu observer le comportement des automobilistes faisant le trajet de Paris à Limoges en passant par Orléans.

  • Pour le trajet de Paris à Orléans, $30 \%$ d’entre eux prennent la route nationale, les autres prennent l’autoroute.
  • Pour le trajet d’Orléans à Limoges :
    • parmi les automobilistes ayant pris la route nationale entre Paris et Orléans, $40 \%$ prennent la route départementale, les autres prennent l’autoroute ;
    • parmi les automobilistes n’ayant pas pris la route nationale entre Paris et Orléans, $45 \%$ prennent la route départementale , les autres prennent l’autoroute.

On choisit un automobiliste au hasard parmi ceux effectuant, en journée classée rouge, le trajet Paris – Limoges en passant par Orléans.

On note $N$ l’événement « l’automobiliste prend la route nationale entre Paris et Orléans » et $D$ l’événement « l’automobiliste prend la route départementale entre Orléans et Limoges ».
Si $A$ est un évènement, on note $\conj{A}$ l’évènement contraire de $A$.

  1. Recopier sur la copie et compléter l’arbre ci-dessous.
    $\quad$
    $\quad$
  2. Calculer $P\left(\conj{N} \cap \conj{D}\right)$ et interpréter le résultat.
    $\quad$
  3. Montrer que la probabilité que l’automobiliste ne choisisse pas la Route Départementale entre Orléans et Limoges est $0,565$.
    $\quad$
    Lors de ces journées classées « rouges », on donne les temps de parcours suivants :
    Paris – Orléans, par autoroute : $3$ heures ;
    Paris – Orléans, par nationale : $2$ heures ;
    Orléans – Limoges, par autoroute : $4$ heures ;
    Orléans – Limoges, par départementale : $3$ heures et demie.
    $\quad$
  4. Recopier et compléter le tableau ci-dessous, qui donne pour chaque trajet, le temps en heure et la probabilité :
    $$\begin{array}{|l|c|c|c|c|}
    \hline
    \text{Évènement}&N\cap D&N\cap \conj{D}&\conj{N}\cap D&\conj{N}\cap \conj{D}\\
    \hline
    \text{Temps en heure}&5,5&&&\\
    \hline
    \text{Probabilité}&0,12&&&\\
    \hline
    \end{array}$$
    $\quad$
  5. Calculer l’espérance de la variable aléatoire qui donne la durée du trajet en heure et en donner une interprétation.
    $\quad$

$\quad$

Correction Exercice

  1. On obtient l’arbre pondéré suivant :$\quad$

    $\quad$
  2. On a :
    $\begin{align*} P\left(\conj{N}\cap \conj{D}\right)&=P\left(\conj{N}\right)\times P_{\conj{N}}\left(\conj{D}\right) \\
    &=0,7\times 0,55\\
    &=0,385\end{align*}$
    La probabilité pour que l’automobiliste n’ait pris ni la route nationale ni la route départementale est égale à $0,385$.
    $\quad$
  3. $N$ et $\conj{N}$ forment un système complet d’événements fini.
    D’après la formule des probabilités totales on a :
    $\begin{align*} P\left(\conj{D}\right)&=P\left(N\cap \conj{D}\right)+P\left(\conj{N}\cap \conj{D}\right)\\
    &=P(N)\times P_N\left(\conj{D}\right)+0,385\\
    &=0,3\times 0,6+0,385\\
    &=0,565\end{align*}$
    $\quad$
  4. On obtient le tableau suivant :
    $$\begin{array}{|l|c|c|c|c|}
    \hline
    \text{Évènement}&N\cap D&N\cap \conj{D}&\conj{N}\cap D&\conj{N}\cap \conj{D}\\
    \hline
    \text{Temps en heure}&5,5&6&6,5&7\\
    \hline
    \text{Probabilité}&0,12&0,18&0,315&0,385\\
    \hline
    \end{array}$$
    $\quad$
  5. On appelle $X$ la variable aléatoire qui donne la durée du trajet en heure.
    On a ainsi $P(X=5,5)=0,12$, $P(X=6)=0,18$, $P(X=6,5)=0,315$ et $P(X=7)=0,385$.
    Ainsi l’espérance mathématique de $X$ est :
    $\begin{align*} E(X)&=5,5\times 0,12+6\times 0,18+6,5\times 0,315+7\times 0,385\\
    &=6,482~5\end{align*}$
    En moyenne, la durée du trajet est d’environ $6,5$ heures.
    $\quad$
    Remarque : On pouvait, pour simplifier un peu les calculs, utiliser la variable aléatoire $Y=X-5,5$.
    On a alors
    $\begin{align*} E(Y)&=0\times 0,12+0,5\times 0,18+1\times 0,315+1,5\times 0,385\\
    &=0,982~5\end{align*}$
    Or $X=Y+5,5$
    Ainsi $E(X)=E(Y)+5,5=6,482~5$.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence