E3C2-Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Ce QCM comprend 5 questions.

Pour chacune des questions, une seule des quatre réponses proposées est correcte.
Les questions sont indépendantes.

Pour chaque question, indiquer le numéro de la question et recopier sur la copie la
lettre correspondante à la réponse choisie.

Aucune justification n’est demandée mais il peut être nécessaire d’effectuer des
recherches au brouillon pour aider à déterminer votre réponse.

Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une question
sans réponse n’apporte ni ne retire de point.

Question 1

On considère la loi de probabilité de la variable aléatoire $X$ donnée par le tableau ci-dessous :

$$\begin{array}{|c|c|c|c|c|c|}
\hline
k&-5&0&10&20&50\\
\hline
P(X=k)&0,71&0,03&0,01&0,05&0,2\\
\hline
\end{array}$$
L’espérance de $X$ est :

a. $15$
b. $0,2$
c. $7,55$
d. $17$

$\quad$

Correction Question 1

L’espérance de $X$ est :

$\begin{align*} E(X)&=\small{-5\times 0,71+0\times 0,03+10\times 0,01+20\times 0,05+50\times 0,2} \\
&=7,55\end{align*}$

Réponse c

$\quad$

[collapse]

$\quad$

Question 2

On se place dans un repère orthonormé.
Le cercle de centre A( -2 ; 4) et de rayon 9 a pour équation :

a. $(x+2)^2+(y-4)^2=81$
b. $(x-2)^2+(y+4)^2=81$
c. $(x+2)^2+(y-4)^2=9$
d. $(x-2)^2+(y+4)^2=9$

$\quad$

Correction Question 2

Une équation du cercle est $\left(x-(-2)\right)^2+(y-4)^2=9^2$ soit $(x+2)^2+(y-4)^2=81$.

Réponse a

$\quad$

[collapse]

$\quad$

Question 3

Soit $f$ la fonction définie par $f(x)=ax^2+bx+c$ où $a$, $b$ et $c$ sont des réels.

On considère dans un repère la courbe représentative de $f$ tracée ci-dessous.

On appelle $\Delta$ son discriminant.

On peut affirmer que :

a. $a>0$ ou $c<0$
b. $c$ et $\Delta$ sont du même signe
c. $a<0$ et $c<0$
d. $a<0$ et $\Delta<0$

$\quad$

Correction Question 3

D’après le graphique $a<0$ (la fonction $f$ admet un maximum) et $\Delta>0$ (il y a deux racines)
Les deux racines $x_1$ et $x_2$ sont de signes différents.
Or $ax_1x_2=c$ donc $c>0$
Remarque : On pouvait également lire sur le graphique le fait que $c>0$ puis $f(0)=c$ et graphiquement $f(0)>0$

Réponse b

$\quad$

[collapse]

$\quad$


$\quad$

Question 4

On considère la suite $\left(U_n\right)$ définie par $U_0=-2$ et $U_{n+1}=2U_n-5$.
Un algorithme permettant de calculer la somme $S=U_0+U_1+\ldots+U_{36}$ est :

$\begin{array}{llll}
\textbf{a.}&\begin{array}{|l|}
\hline
\text{U=-2}\\
\text{S=0}\\
\text{Pour i de 1 à 37}\\
\hspace{0.5cm}\text{U$\leftarrow$2U-5}\\
\hspace{0.5cm}\text{S$\leftarrow$S+U}\\
\text{Fin Pour}\\
\hline\end{array}&\textbf{b.}&\begin{array}{|l|}
\hline
\text{U=-2}\\
\text{S=0}\\
\text{Pour i de 1 à 36}\\
\hspace{0.5cm}\text{U$\leftarrow$2U-5}\\
\hspace{0.5cm}\text{S$\leftarrow$S+U}\\
\text{Fin Pour}\\
\hline\end{array}\\\\
\textbf{c.}&\begin{array}{|l|}
\hline
\text{U=-2}\\
\text{S=-2}\\
\text{Pour i de 1 à 37}\\
\hspace{0.5cm}\text{S$\leftarrow$S+U}\\
\hspace{0.5cm}\text{U$\leftarrow$2U-5}\\
\text{Fin Pour}\\
\hline\end{array}&\textbf{d.}&\begin{array}{|l|}
\hline
\text{U=-2}\\
\text{S=-2}\\
\text{Pour i de 1 à 36}\\
\hspace{0.5cm}\text{U$\leftarrow$2U-5}\\
\hspace{0.5cm}\text{S$\leftarrow$S+U}\\
\text{Fin Pour}\\
\hline\end{array}\end{array}$

$\quad$

Correction Question 4

Si la variable $\text{U}$ est transformée avant la variable $\text{S}$ alors $\text{S}$ doit être initialisée à $-2$.
Dans l’algorithme c., quand $\text{i}=1$, la variable $S$, du fait de l’initialisation $S=u_0$, prend la valeur $u_0+u_0$ au lieu de $u_0+u_1$.

Réponse d

$\quad$

[collapse]

$\quad$

Question 5

La suite $\left(U_n\right)$ définie par $U_0=-2$ et $U_{n+1}=2U_n-5$ est :

a. arithmétique mais pas géométrique
b. géométrique mais pas arithmétique
c. ni arithmétique, ni géométrique
d. à la fois arithmétique et géométrique

$\quad$

Correction Question 5

On $U_0=-2$
$\begin{align*} U_1&=2U_0-5\\
&=2\times (-2)-5 \\
&=-9\end{align*}$
$\begin{align*} U_2&=2U_1-5\\
&=2\times (-9)-5\\
&=-23\end{align*}$

Ainsi :

  • $U_1-U_0=-7$ et $U_2-U_1=-14$
    Ces différences ne sont pas égales : la suite n’est pas arithmétique
  • $\dfrac{U_1}{U_0}=\dfrac{9}{2}$ et $\dfrac{U_2}{U_1}=\dfrac{23}{9}$
    Ces quotients ne sont pas égaux : la suite n’est pas géométrique

Réponse c

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence