E3C2-Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Cet exercice est un questionnaire à choix multiple (QCM).
Pour chacune des cinq questions, une seule des quatre réponses proposées est correcte.
Les questions sont indépendantes.
Pour chaque question, indiquer sur la copie le numéro de la question et recopier la lettre correspondant à la réponse choisie.
Aucune justification n’est demandée mais il peut être nécessaire d’effectuer des recherches au brouillon pour aider à déterminer la réponse.
Chaque réponse rapporte 1 point. Une réponse incorrecte ou une question sans réponse
n’apporte, ni ne retire de point.

Question 1

Soit $P$ une probabilité sur un univers $\Omega$ et $A$ et $B$ deux évènements indépendants tels que $P(A)= 0,5$ et $P(B) = 0,2$.
Alors $P(A\cup B)$ est égal à :

a. $0,1$
b. $0,7$
c. $0,6$
d. On ne peut pas savoir

$\quad$

Correction Question 1

$A$ et $B$ sont indépendants donc $P(A\cap B)=p(A)p(B)$.
Ainsi :
$\begin{align*} P(A\cup B)&=P(A)+p(B)-P(A\cap B)\\
&=P(A)+p(B)-P(A)P(B)\\
&=0,5+0,2-0,5\times 0,2\\
&=0,6\end{align*}$

Réponse c

$\quad$

[collapse]

$\quad$

Question 2

La valeur arrondie au centième de $1+1,2+1,2^2+1,2^3+\ldots+1,2^{10}$ est :

a. $3,27$
b. $25,96$
c. $26,96$
d. $32,15$

$\quad$

Correction Question 2

Il s’agit de la somme de termes d’une suite géométrique.
$\begin{align*} S&=1+1,2+1,2^2+1,2^3+\ldots+1,2^{10} \\
&=\dfrac{1-1,2^{11}}{1-1,2}\\
&\approx 32,15\end{align*}$

Réponse d

$\quad$

[collapse]

$\quad$

Question 3

Soit $f$ la fonction définie sur $\R$ par $f(x)=\dfrac{x}{\e^x}$.
Pour tout réel $x$, $f(x)$ est égal à :

a. $f(x)=\dfrac{\e^{-x}}{-x}$
b. $f(x)=x\e^{-x}$
c. $f(x)=-x\e^{-x}$
d. $f(x)=\dfrac{\e^{-x}}{x}$

$\quad$

Correction Question 3

Pour tout réel $x$ on a
$\begin{align*} f(x)&=\dfrac{x}{\e^x}\\
&=x\e^{-x}\end{align*}$

Réponse b

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

Soit $g$ la fonction définie sur $\R$ par $g(x)=(2x-5)\e^x$. On admet que $g$ est dérivable sur $\R$ et on note $g’$ sa fonction dérivée.
Alors pour tout réel $x$ , $g'(x)$ est égal à :

a. $(2x-3)\e^x$
b. $(-2x+7)\e^x$
c. $2\e^x$
d. $-5\e^x$

$\quad$

Correction Question 4

On utilise la formule de dérivation d’un produit avec $u(x)=2x-5$ et $v(x)=\e^x$

Pour tout réel $x$ on a :
$\begin{align*} g'(x)&=2\e^x+(2x-5)\e^x\\
&=(2+2x-5)\e^x\\
&=(2x-3)\e^x\end{align*}$

Réponse a

$\quad$

[collapse]

$\quad$

Question 5

Le nombre $\dfrac{\e^3\times \e^{-5}}{\e^2}$ est égal à :

a. $-1$
b. $\e^{-15/2}$
c. $\dfrac{1}{\e^4}$
d. $\dfrac{3\e^{-5}}{2}$

$\quad$

Correction Question 5

$\begin{align*} \dfrac{\e^3\times \e^{-5}}{\e^2}&=\dfrac{\e^{3+(-5)}}{\e^2} \\
&=\dfrac{\e^{-2}}{\e^2}\\
&=\e^{-2-2}\\
&=\e^{-4}\\
&=\dfrac{1}{\e^4}\end{align*}$

Réponse c

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence