E3C2-Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Ce QCM comprend cinq questions. Pour chacune des questions, une seule des quatre
réponses proposées est correcte. Les questions sont indépendantes.
Pour chaque question, indiquer le numéro de la question et recopier sur la copie la lettre correspondante à la réponse choisie.
Aucune justification n’est demandée mais il peut être nécessaire d’effectuer des recherches au brouillon pour aider à déterminer votre réponse.
Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une question sans
réponse n’apporte, ni ne retire aucun point.

Question 1

On considère la fonction $f$ définie sur $\R$ par $f(x)=2x^2+6x-8$.
Parmi les propositions suivantes, laquelle est juste?

a. $f(x)=2(x-4)(x+1)$
b. $f(x)=(2x+8)(2x-2)$
c. $f(x)=2(x+4)(x-1)$
d. $f(x)=2(x+3)(x-2)$

$\quad$

Correction Question 1

On a $f(x)=2\left(x^2+3x-4\right)$.
La somme des racines du polynômes du second degré vaut $-3$ et leur produit vaut $-4$.
On peut donc exclure les propositions a. et d.
Or :
$\begin{align*} 2(x+4)(x-1)&=2\left(x^2-x+4x-4\right)\\
&=2\left(x^2+3x-4\right) \\
&=f(x)\end{align*}$

Réponse c

$\quad$

[collapse]

$\quad$

Question 2

Pour tout réel $x$, $\dfrac{\left(\e^x\right)^2}{\e^{-x}}$ est égal à :

a. $\e^{x^2+x}$
b. $\e^{3x}$
c. $\e^2$
d. $\e^{-2}$

$\quad$

Correction Question 2

$\begin{align*} \dfrac{\left(\e^x\right)^2}{\e^{-x}}&=\dfrac{\e^{2x}}{\e^{-x}} \\
&=\e^{2x-(-x)}\\
&=\e^{3x}\end{align*}$

Réponse b

$\quad$

[collapse]

$\quad$

Question 3

Dans le plan muni d’un repère, soit $\mathcal{C}$ la courbe représentative de la fonction $g$ définie sur $\R$ par $g(x)=\e^x$. L’équation de la tangente à la courbe $\mathcal{C}$ au point d’abscisse $0$ est :

a. $y=-x-1$
b. $y=-x+1$
c. $y=x+1$
d. $y=x$

$\quad$

Correction Question 3

La fonction $g$ est dérivable sur $\R$ et, pour tout réel $x$, on a $g'(x)=\e^x$.
Une équation de cette tangente est de la forme $y=g'(0)(x-0)+g(0)$.
$g'(0)=1$ et $g(0)=1$
Ainsi une équation de la tangente est $y=x+1$.

Réponse c

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

On considère la fonction $f$ définie sur $\R$ par $f(x)=(-x+1)\e^x$
On note $f’$ la fonction dérivée de la fonction $f$. Parmi les propositions suivantes, laquelle est juste ?

a. $f'(x)=-x\e^x$
b. $f'(x)=(x-2)\e^x$
c. $f'(x)=(-x+2)\e^x$
d. $f'(x)=x\e^{-x}$

$\quad$

Correction Question 4

La fonction $f$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
Pour tout réel $x$ on a :
$\begin{align*} f'(x)&=-1\times \e^x+(-x+1)\times \e^x \\
&=(-1-x+1)\e^x\\
&=-x\e^x
\end{align*}$

Réponse a

$\quad$

[collapse]

$\quad$

Question 5

Dans le plan muni d’un repère orthonormal, on considère la courbe représentative d’une fonction $f$ définie et dérivable sur $\R$.

Parmi les propositions suivantes, laquelle n’est pas juste ?

a. $f'(-2)=0$
b. $f'(3)=-2$
c. $f(0)=3$
d. $f'(0)=-2$

$\quad$

Correction Question 5

La tangente à la courbe au point d’abscisse $2$ est parallèle à l’axe des abscisses. Donc $f'(-2)=0$.
Le coefficient directeur de la tangente à la courbe au point d’abscisse $0$ est $-2$ donc $f'(0)=-2$.
On lit sur la courbe que $f(0)=3$.
Donc, par élimination, $f'(3)\neq -2$.

Réponse b

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence