E3C2-Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Cet exercice est un questionnaire à choix multiple (QCM) comportant cinq questions.
Pour chacune des questions, une seule des quatre réponses proposées est correcte.
Les questions sont indépendantes.
Pour chaque question, indiquer le numéro de la question et recopier sur la copie la lettre correspondante à la réponse choisie.
Aucune justification n’est demandée mais il peut être nécessaire d’effectuer des recherches au brouillon pour aider à déterminer la réponse.
Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une question sans réponse n’apporte ni ne retire de point.

Question 1

Soit $ABC$ un triangle tel que $AB=6$, $AC=3$ et $\widehat{BAC}=\dfrac{\pi}{3}$.

a. $\vect{AB}.\vect{AC}=9$
b. $\vect{AB}.\vect{AC}=18$
c. $\vect{AB}.\vect{AC}=9\sqrt{3}$
d. les données sont insuffisantes pour calculer $\vect{AB}.\vect{AC}$

$\quad$

Correction Question 1

On a :
$\begin{align*} \vect{AB}.\vect{AC}&=AB\times AC\times \cos \widehat{BAC} \\
&=6\times 3 \times \cos \dfrac{\pi}{3} \\
&=18\times \dfrac{1}{2} \\
&=9\end{align*}$

Réponse a

$\quad$

[collapse]

$\quad$

Question 2

Soit $f$ une fonction telle que, pour tout nombre réel $h$ non nul, $$\dfrac{f(1+h)-f(1)}{h}=h^2+3h-1$$
Alors $f'(1)$ est égal à :

a. $h^2+3h-1$
b. $-1$
c. $3$
d. les données sont insuffisantes pour calculer $f'(1)$

$\quad$

Correction Question 2

$f'(1)$ est égale à, si elle existe, $\lim\limits_{h\to 0}\dfrac{f(1+h)-f(1)}{h}$.
Or
$\begin{align*} \lim\limits_{h\to 0}\dfrac{f(1+h)-f(1)}{h}&=\lim\limits_{h\to 0} h^2+3h-1\\&=-1\end{align*}$

Donc $f'(1)=-1$

Réponse b

$\quad$

[collapse]

$\quad$

Question 3

Soit $f$ la fonction définie sur $\R$ par $f(x)=(x+2)\e^x$.
Alors, la fonction $f’$ dérivée de $f$ est donnée sur $\R$ par :

a. $f'(x)=\e^x$
b. $f'(x)=(x+3)\e^x$
c. $f'(x)=(-x-1)\e^x$
d. $f'(x)=\dfrac{(-x-1)\e^x}{\e^{2x}}$

$\quad$

Correction Question 3

La fonction $f$ est dérivable sur $\R$ comme produit de fonctions dérivables sur $\R$.
Pour tout réel $x$ on a :
$\begin{align*} f'(x)&=1\times \e^x+(x+2)\times \e^x \\
&=(1+x+2)\e^x\\
&=(x+3)\e^x\end{align*}$

Réponse b

$\quad$

[collapse]

$\quad$

$\quad$

Soit $f$ une fonction telle que $f(2)=5$ et $f'(2)=-1$
Dans un repère, la tangente à la courbe représentative de $f$ au point d’abscisse $2$ a pour équation :

a. $y=-x-3$
b. $y=-x+3$
c. $y=-x+7$
d. $y=5x-11$

$\quad$

Correction Question 4

Une équation de cette tangente est de la forme $y=f'(2)(x-2)+f(2)$
soit $y=-(x-2)+5$ ou encore $y=-x+7$.

Réponse c

$\quad$

[collapse]

$\quad$

Question 5

Soit $f$ une fonction définie et dérivable sur $\R$ dont la courbe représentative $C_f$ dans un repère est la courbe ci-dessous.

La tangente à la courbe $C_f$ au point $A\left(1;\dfrac{4}{3}\right)$ passe par le point $B\left(0;-\dfrac{5}{3}\right)$.
Alors :

a. $f'(1)=\dfrac{1}{3}$
b. $f'(1)=\dfrac{4}{3}$
c. $f'(1)=-\dfrac{5}{3}$
d. $f'(1)=3$

$\quad$

Correction Question 5

$f'(1)$ est le coefficient directeur de la tangente au point $A$.
Ainsi :
$\begin{align*} f'(1)&=\dfrac{-\dfrac{5}{3}-\dfrac{4}{3}}{0-1} \\
&=\dfrac{-3}{-1} \\
&=3\end{align*}$

Réponse d

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence