E3C2-Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Ce QCM comprend 5 questions.
Pour chacune des questions, une seule des quatre réponses proposées est correcte.
Les questions sont indépendantes.
Pour chaque question, indiquer le numéro de la question et recopier sur la copie la lettre correspondante à la réponse choisie.
Aucune justification n’est demandée mais il peut être nécessaire d’effectuer des recherches au brouillon pour aider à déterminer votre réponse.
Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une question sans réponse n’apporte ni ne retire de point.

Question 1

On considère la fonction définie sur $\R$ par $f(x)=-x^2-x+6$. On admet que l’une des quatre courbes ci-dessous représente la fonction $f$. Laquelle?

$\quad$

Correction Question 1

Le coefficient principal de cette fonction du second degré est $a=-1<0$.
On exclut donc les propositions a. et b.
L’abscisse du sommet de la parabole est :
$\begin{align*} x_S&=-\dfrac{b}{2a} \\
&=-\dfrac{-1}{-2}\\
&=-\dfrac{1}{2}\end{align*}$

Réponse c

$\quad$

[collapse]

$\quad$

Question 2

On pose pour tout réel $x$ : $A(x)=\e^{2x}$. On a alors, pour tout $x\in \R$ :

a. $A(x)=2\e^x$
b. $A(x)=\e^{x^2}$
c. $A(x)=\e^x+\e^2$
d. $A(x)=\left(\e^x\right)^2$

$\quad$

Correction Question 2

Pour tout réel $x$ on a $\left(\e^x\right)^2=\e^{2x}$.

Réponse d

$\quad$

[collapse]

$\quad$

Question 3

Le plan est muni d’un repère orthonormé.
Les droites d’équations $2x+y+1=0$ et $3x-2y+5=0$

a. sont sécantes en $A(1 ; 1)$.
b. sont sécantes en $B(1 ; -1)$.
c. sont sécantes en $C(-1 ; 1)$.
d. ne sont pas sécantes.

$\quad$

Correction Question 3

Un vecteur directeur de la droite d’équation $2x+y+1=0$ est $\vec{u}\begin{pmatrix}-1\\2\end{pmatrix}$.
Un vecteur directeur de la droite d’équation $3x-2y+5=0$ est $\vec{v}\begin{pmatrix}2\\3\end{pmatrix}$.
Ces deux vecteurs ne sont clairement pas colinéaires. Les droites sont donc sécantes.

On a $2\times (-1)+1+1=0$ et $3\times (-1)-2\times 1+5=0$
Le point $C(-1;1)$ appartient donc aux deux droites.

Réponse c

$\quad$

[collapse]

$\quad$


$\quad$

Question 4

Le plan est muni d’un repère orthonormé.
Les droites d’équations $x+3y-5=0$ et $3x-y+6=0$ sont :

a. pependiculaires.
b. sécantes non perpendiculaires.
c. parallèles.
d. confondues.

$\quad$

Correction Question 4

Un vecteur directeur de la droite d’équation $x+3y-5=0$ est $\vec{u}\begin{pmatrix}-3\\1\end{pmatrix}$.
Un vecteur directeur de la droite d’équation $3x-y+6=0$ est $\vec{v}\begin{pmatrix}1\\3\end{pmatrix}$.

Or :
$\begin{align*} \vec{u}.\vec{v}&=-3\times 1+1\times 3\\
&=0\end{align*}$
Les deux vecteurs sont orthogonaux.
Par conséquent les droites sont perpendiculaires.

Réponse a

$\quad$

[collapse]

$\quad$

Question 5

On considère la fonction Python ci-dessous :
$$\begin{array}{|l|}
\hline
\text{def suite(n) :}\\
\hspace{0.5cm}\text{u=2}\\
\hspace{0.5cm}\text{k=0}\\
\hspace{0.5cm}\text{while k<n :}\\
\hspace{1cm}\text{u=u+k}\\
\hspace{1cm}\text{k=k+1}\\
\hspace{0.5cm}\text{return u}\\
\hline
\end{array}$$
Quelle valeur renvoie l’appel $\text{suite(5)}$?

a. $5$
b. $8$
c. $12$
d. $17$

$\quad$

Correction Question 5

Voici les différentes valeurs prises par les variables $u$ et $k$.
$\begin{array}{|c|c|c|c|c|c|c|}
\hline
u&2&2&3&5&8&12\\
\hline
k&0&1&2&3&4&5\\
\hline
\end{array}$

L’appel $\text{suite(5)}$ renvoie donc la valeur $12$.

Réponse c

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence