E3C2 – Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Cet exercice est un questionnaire à choix multiple (QCM). Pour chacune des questions, une seule des réponses proposées est exacte. Indiquer sur la copie le numéro de la question ainsi que la réponse choisie. Aucune justification n’est attendue.

Une réponse juste rapporte un point, une réponse fausse ou l’absence de réponse n’enlèvent pas de point.

Question 1

Dans un repère du plan, la droite $(d)$ a pour équation : $2x-3y+1=0$.
Un vecteur directeur de la droite $(d)$ est :

a. $\vec{u}(2;-3)$
b. $\vec{v}(3;2)$
c. $\vec{w}(-3;1)$
a. $\vec{r}\left(1;\dfrac{3}{2}\right)$

$\quad$

Correction Question 1

Un vecteur directeur d’une droite dont une équation est $ax+by+c=0$ a pour coordonnées $(-b;a)$.
Donc, ici, un vecteur directeur est $\vec{v}(3;2)$.

Réponse b

$\quad$

[collapse]

$\quad$

Question 2

Dans un repère du plan, la droite $(d)$ a pour équation : $2x-3y+1=0$.
Un vecteur normal à la droite $(d)$ est :

a. $\vec{u}(2;-3)$
b. $\vec{v}(3;2)$
c. $\vec{w}(-3;1)$
a. $\vec{r}\left(1;\dfrac{3}{2}\right)$

$\quad$

Correction Question 2

Un vecteur normal à une droite dont une équation est $ax+by+c=0$ a pour coordonnées $(a;b)$.

Donc, ici, un vecteur normal est $\vec{u}(2;-3)$.

Réponse a

$\quad$

[collapse]

$\quad$

Question 3

On donne trois points distincts : $A$, $B$ et $C$.
Les points $D$ et $E$ sont tels que $\vect{EB}=\vect{BA}$ et $\vect{ED}=2\times \vect{BC}$. On a :

a. $A$ est le milieu de $[EB]$
b. $B$ est le milieu de $[ED]$
c. $C$ est le milieu de $[AD]$
d. $D$ est le milieu de $[AC]$

$\quad$

Correction Question 3

Il est préférable de faire un schéma pour se rendre compte de ce qu’il faut prouver.
$\begin{align*} \vect{AD}&=\vect{AB}+\vect{BE}+\vect{ED} \\
&=\vect{AB}+\vect{AB}+2\vect{BC} \\
&=2\left(\vect{AB}+\vect{BC}\right) \\
&=2\vect{AC}\end{align*}$
Par conséquent $C$ est le milieu de $[AD]$.

Réponse c

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

Soit $x$ un nombre réel. Dans un repère orthonormé, les vecteurs $\vec{u}(-x+4;7)$ et $\vec{v} (9; 2x- 5)$ sont orthogonaux lorsque $x$ est égal à :

a. $\dfrac{1}{5}$
b. $10$
c. $-\dfrac{1}{5}$
d. $6$

$\quad$

Correction Question 4

$\phantom{\ssi} \vec{u}(-x+4;7)$ et $\vec{v} (9; 2x- 5)$ sont orthogonaux
$\ssi \vec{u}.\vec{v}=0$
$\ssi 9(-x+4)+7(2x-5)=0$
$\ssi -9x+36+14x-35=0$
$\ssi 5x=-1$
$\ssi x=-\dfrac{1}{5}$

Réponse c

$\quad$

[collapse]

$\quad$

Question 5

Dans un repère orthonormé, on considère les points $A(-1; -2)$, $B(2; 0)$, $C(3; -1)$ et $D(-3; 4)$. Alors $\vect{AC}.\vect{BD}$ est égal à :

a. $-16$
b. $11$
c. $21$
d. $-24$

$\quad$

Correction Question 5

On a $\vect{AC}(4;1)$ et $\vect{BD}(-5;4)$
Ainsi :
$\begin{align*} \vect{AC}.\vect{BD}&= 4\times (-5)+1\times 4 \\
&=-16\end{align*}$

Réponse a

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence