E3C2 – Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Ce QCM comprend 5 questions.

Pour chacune des questions, une seule des quatre réponses proposées est correcte.

Les questions sont indépendantes.

Pour chaque question, indiquer le numéro de la question et recopier sur la copie la lettre correspondante à la réponse choisie.

Aucune justification n’est demandée mais il peut être nécessaire d’effectuer des recherches au brouillon pour aider à déterminer votre réponse.

Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une question sans réponse n’apporte ni ne retire de point.

Question 1

Dans un repère orthonormé, on a : $\vect{AB}\begin{pmatrix}-4\\3\end{pmatrix}$ et $\vect{CB}\begin{pmatrix}-1\\5\end{pmatrix}$. Le produit scalaire $\vect{AB}.\vect{CB}$ vaut :

a. $-23$
b. $-17$
c. $19$
d. $23$

$\quad$

Correction Question 1

$\begin{align*} \vect{AB}.\vect{CB}&=-4\times (-1)+3\times 5\\
&=19\end{align*}$

Réponse c

$\quad$

[collapse]

$\quad$

Question 2

Dans un repère orthonormé, on a $\vect{CB}\begin{pmatrix}-1\\5\end{pmatrix}$. Alors la longueur $CB$ est égale à :

a. $24$
b. $\sqrt{24}$
c. $26$
d. $\sqrt{26}$

$\quad$

Correction Question 2

$\begin{align*} CB&=\sqrt{(-1)^2+5^2}\\
&=\sqrt{26}\end{align*}$

Réponse d

$\quad$

[collapse]

$\quad$

Question 3

$ABC$ est un triangle équilatéral de côté $3$.

$I$ et $H$ sont les milieux respectifs de $[CB]$ et de $[AB]$.
$D$ est le projeté orthogonal de $I$ sur $(CH)$.

On a :

a. $\vect{HB}.\vect{HC}=0$
b. $\vect{AH}.\vect{DI}=0$
c. $\vect{AH}.\vect{AI}=0$
d. $\vect{BH}.\vect{DI}=0$

$\quad$

Correction Question 3

$ABC$ est un triangle équilatéral. La médiane $(HC)$ est donc également la hauteur issue de $C$.
Par conséquent $\vect{HB}$ et $\vect{HC}$ sont orthogonaux.
Donc $\vect{HB}.\vect{HC}=0$

Réponse a

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

Soit un réel $x$ tel que $\cos(x)=\dfrac{\sqrt{3}}{2}$. On a :

a. $\cos(-x)=\dfrac{\sqrt{3}}{2}$
b. $\sin(-x)=\dfrac{-\sqrt{3}}{2}$
c. $\sin(x)=\dfrac{\sqrt{3}}{2}$
d. $\cos(-x)=\dfrac{-\sqrt{3}}{2}$

$\quad$

Correction Question 4

Pour tout réel $x$ on a $\cos(-x)=\cos(x)$
Ainsi $\cos(-x)=\dfrac{\sqrt{3}}{2}$

Réponse a

$\quad$

[collapse]

$\quad$

Question 5

Le plan est muni d’un repère orthonormé.
On considère l’équation de cercle $x^2-2x+(y+3)^2=3$. Son centre a pour coordonnées :

a. $(-1;-3)$
b. $(1;-3)$
c. $(-2;3)$
d. $(-2;-3)$

$\quad$

Correction Question 5

$\begin{align*} &x^2-2x+(y+3)^2=3 \\
\ssi~&x^2-2x+1-1+\left(y-(-3)\right)^2=3\\
\ssi~&(x-1)^2+\left(y-(-3)\right)^2=4\end{align*}$
Le centre du cercle a pour coordonnées $(1;-3)$.

Réponse b

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence