E3C2 – Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Ce QCM comprend 5 questions.

Pour chacune des questions, une seule des quatre réponses proposées est correcte.

Les questions sont indépendantes.

Pour chaque question, indiquer le numéro de la question et recopier sur la copie la lettre correspondante à la réponse choisie.

Aucune justification n’est demandée mais il peut être nécessaire d’effectuer des recherches au brouillon pour aider à déterminer votre réponse.

Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une question sans réponse n’apporte ni ne retire de point.

Question 1

On définit la fonction $f$ sur $]2,5 ; +\infty[$ par : $$f(x)=\dfrac{3x+1}{-2x+5}$$
Alors pour tout $x\in ]2,5;+\infty[$, $f'(x)$ est donné par l’expression :

a. $-\dfrac{3}{2}$
b. $\dfrac{17}{(-2x+5)^2}$
c. $\dfrac{13}{(-2x+5)^2}$
d. $-\dfrac{13}{(-2x+5)^2}$

$\quad$

Correction Question 1

La fonction $f$ est dérivable sur $]2,5;+\infty[$ en tant que quotient de fonctions dérivables dont le dénominateur ne s’annule pas sur $]2,5;+\infty[$.

Pour tout réel $x>2,5$ on a :
$\begin{align*} f'(x)&=\dfrac{3(-2x+5)-(-2)(3x+1)}{(-2x+5)^2} \\
&=\dfrac{-6x+15+6x+2}{(-2x+5)^2} \\
&=\dfrac{17}{(-2x+5)^2}\end{align*}$

Réponse b

$\quad$

[collapse]

$\quad$

Question 2

On considère une fonction $f$ polynôme de degré $2$ dont une représentation graphique est donnée ci-dessous dans un repère orthonormé.

Par lecture graphique, on peut affirmer qu’une forme factorisée de $f$ est :

a. $-2(x+1)(x+3)$
b. $-2(x-1)(x-3)$
c. $2(x-1)(x-3)$
d. $2(x+1)(x+3)$

$\quad$

Correction Question 2

La fonction polynôme du second degré est croissante puis décroissante. Son coefficient principal est donc négatif.
Graphiquement ses racines sont $1$ et $3$.
Ainsi $f(x)=-2(x-1)(x-3)$.

Réponse b

$\quad$

[collapse]

$\quad$

Question 3

On se place dans un repère orthogonal. On a tracé ci-dessous la courbe représentative d’une fonction $f$ ainsi que sa tangente au point $A$.

On a alors :

a. $f'(0)=0$
b. $f'(0)=2$
c. $f'(0)=1$
d. $f'(0)=0,5$

$\quad$

Correction Question 3

$f'(0)$ est le coefficient directeur de la tangente à la courbe au point $A$.
Graphiquement, cette droite passe par les points $A(0;2)$ et $B(1;3)$
Par conséquent :
$\begin{align*} f'(0)&=\dfrac{3-2}{0-1} \\
&=1\end{align*}$

Réponse c

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

Le plan est rapporté à un repère orthonormé.
On considère les points $G(1 ; -2)$ et $H(6 ; 4)$.
La droite $(GH)$ passe par le point :

a. $A(-3 ; 2)$
b. $B(2,5 ; 0)$
c. $C(10 ; 12)$
d. $D(-14 ; -20)$

$\quad$

Correction Question 4

On a $\vect{GH}\begin{pmatrix}5\\6\end{pmatrix}$
$\vect{GA}\begin{pmatrix}-4\\4\end{pmatrix}$ n’est clairement pas colinéaire à $\vect{GH}$
$\vect{GB}\begin{pmatrix}1,5\\2\end{pmatrix}$ n’est clairement pas colinéaire à $\vect{GH}$
$\vect{GC}\begin{pmatrix}9\\14\end{pmatrix}$ n’est clairement pas colinéaire à $\vect{GH}$
$\vect{GD}\begin{pmatrix}-15\\-18\end{pmatrix}$. $\vect{GD}=-3\vect{GH}$. Ces deux vecteurs sont colinéaires.
Donc $(GH)$ passe par le point $D$.

Réponse d

$\quad$

[collapse]

$\quad$

Question 5

On considère un nombre réel $x$ appartenant à l’intervalle $\left[\pi;\dfrac{3\pi}{2}\right]$ tel que $\cos x=-\dfrac{\sqrt{3}}{2}$.
Alors $\sin(x)$ est égal à :

a. $\dfrac{\sqrt{3}}{2}$
b. $-\dfrac{\sqrt{3}}{2}$
c. $-\dfrac{1}{2}$
d. $\dfrac{1}{2}$

$\quad$

Correction Question 5

$x\in \left[\pi;\dfrac{3\pi}{2}\right]$ donc $\sin(x)<0$.

$\begin{align*} &\cos^2(x)+\sin^2(x)=1\\
\ssi~& \dfrac{3}{4}+\sin^2(x)=1 \\
\ssi~& \sin^2(x)=\dfrac{1}{4} \\
\ssi~& \sin(x)=\dfrac{1}{2} \text{ ou } \sin(x)=-\dfrac{1}{2}\end{align*}$
Ainsi $\sin(x)=-\dfrac{1}{2}$

Réponse c

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence