E3C2 – Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Cet exercice est un questionnaire à choix multiple (QCM) comportant 5 questions.

Pour chacune des questions, une seule des quatre réponses proposées est correcte.
Les questions sont indépendantes.

Pour chaque question, indiquer le numéro de la question et recopier sur la copie la lettre
correspondante à la réponse choisie.

Aucune justification n’est demandée mais il peut être nécessaire d’effectuer des recherches au brouillon pour aider à déterminer la réponse.
Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une question sans réponse n’apporte ni ne retire de point.

Question 1

Dans le plan muni d’un repère orthonormé, on considère les vecteurs $\vec{u}(-2;4)$ et $\vec{v}(3;-6)$.
Le produit scalaire $\vec{u}.\vec{v}$ est égal à :

a. $18$
b. $-30$
c. $0$
d. $24$

$\quad$

Correction Question 1

$\begin{align*} \vec{u}.\vec{v}&=-2\times 3+4\times (-6)\\
&=-30\end{align*}$

Réponse b

$\quad$

[collapse]

$\quad$

Question 2

On considère le triangle $ABC$ tel que $AB=5$, $AC==7$ et $\widehat{BAC}=60$°.
Quelle est la longueur du côté $[BC]$ ?

a. $BC=\sqrt{109}$
b. $BC=\sqrt{74}$
c. $BC=-35\sqrt{3}+74$
d. $BC=\sqrt{39}$

$\quad$

Correction Question 2

On a d’une part :
$\begin{align*} \vect{AB}.\vect{AC}&=AB\times AC\times \cos \widehat{BAC} \\
&=35\cos 60\\
&=17,5\end{align*}$
D’autre part
$\begin{align*} &\vect{AB}.\vect{AC}=\dfrac{1}{2}\left(AB^2+AC^2-BC^2\right)\\
\ssi~& 17,5=\dfrac{1}{2}\left(25+49-BC^2\right)\\
\ssi~& 35=74-BC^2 \\
\ssi~& BC^2=39\end{align*}$
Par conséquent $BC=\sqrt{39}$

Réponse d

$\quad$

[collapse]

$\quad$

Question 3

Dans le plan muni d’un repère orthonormé, on considère le cercle $C$ de centre $A(2; 3)$ et de rayon $R = 4$.
Parmi les équations suivantes, laquelle est une équation du cercle $C$ ?

a. $x^2+4x+y^2+6y+9=0$
b. $x^2+4x+y^2+6y-3=0$
c. $x^2-4x+y^2-6y-3=0$
d. $x^2-4x+y^2-6y+9=0$

$\quad$

Correction Question 3

Une équation du cercle $C$ est
$\begin{align*} &(x-2)^2+(y-3)^2=4^2\\
\ssi~&x^2-4x+4+y^2-6y+9=16\\
\ssi~&x^2-4x+y^2-6y-3=0\end{align*}$

Réponse c

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

Le réel $\dfrac{-23\pi}{3}$ a le même point image sur le cercle trigonométrique que le réel :

a. $\dfrac{-\pi}{3}$
b. $\dfrac{\pi}{3}$
c. $\dfrac{-2\pi}{3}$
d. $\dfrac{2\pi}{3}$

$\quad$

Correction Question 4

On calcule les différences entre $\dfrac{-23\pi}{3}$ et les réponses proposées. Les deux réels ont le même point image si cette différence est un multiple de $2\pi$.

$\dfrac{-23\pi}{3}-\dfrac{-\pi}{3}=\dfrac{-22\pi}{3}$
$\dfrac{-23\pi}{3}-\dfrac{\pi}{3}=-8\pi=-4\times 2\pi \checkmark$
$\dfrac{-23\pi}{3}-\dfrac{-2\pi}{3}=\dfrac{-21\pi}{3}$
$\dfrac{-23\pi}{3}-\dfrac{2\pi}{3}=\dfrac{-25\pi}{3}$

Réponse b

$\quad$

[collapse]

$\quad$

Question 5

On considère l’algorithme suivant écrit en langage Python :
$$\begin{array}{ll}
1&\textcolor{blue}{\text{def }}\textbf{liste}\text{(N):}\\
2&\hspace{1cm}\text{U=}\textcolor{brown}{1}\\
3&\hspace{1cm}\text{L=[U]}\\
4&\hspace{1cm}\textcolor{blue}{\text{for }}\text{i }\textcolor{blue}{\text{in }}\textcolor{purple}{\text{range}}\text{(}\textcolor{brown}{1}\text{,N):}\\
5&\hspace{2cm}\text{U=}\textcolor{brown}{2}\text{*U+}\textcolor{brown}{3}\\
6&\hspace{2cm}\text{L.append(U)}\\
7&\hspace{1cm}\textcolor{blue}{\text{return}}\text{(L)}\end{array}$$
Que contient la variable $\text{L}$ à la fin de l’exécution dans le cas où on choisit $\text{N=4}$?

a. $\text{[1,5,13,29,61]}$
b. $\text{[1,5,13,29]}$
c. $\text{61}$
d. $\text{9}$

$\quad$

Correction Question 5

La fonction Python renvoie une liste de longueur contenant $4$ éléments.

Réponse b

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence