E3C2 – Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Ce QCM comprend 5 questions indépendantes. Pour chacune d’elles, une seule des réponses proposées est exacte.
Indiquer pour chaque question sur la copie la lettre correspondant à la réponse choisie.
Aucune justification n’est demandée.
Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une absence de réponse n’apporte ni ne retire de point.

Question 1

Pour tout entier naturel $n$, on définit la suite $\left(u_n\right)$ par $u_n=3\times \dfrac{10^n}{2^{n+1}}$.
La suite $\left(u_n\right)$ est une suite :

a.arithmétique de raison $3$.
b. géométrique de raison $3$.
c. arithmétique de raison $5$.
d. géométrique de raison $5$.

$\quad$

Correction Question 1

Pour tout entier naturel $n$ on a :
$\begin{align*} u_n&=3\times\dfrac{10^n}{2^{n+1}} \\
&=\dfrac{3}{2}\times\dfrac{10^n}{2^n} \\
&=\dfrac{3}{2}\times 5^n\end{align*}$
La suite $\left(u_n\right)$ est donc géométrique de raison $5$.

Réponse d

$\quad$

[collapse]

$\quad$

Question 2

Dans un repère orthonormé$\Oij$ du plan, on considère les points $A(-2; 1)$ et $B(2; 4)$.
La droite $\Delta$ passe par le point $C(-1; 1)$ et admet le vecteur $\vect{AB}$ pour vecteur normal.
La droite $\Delta$ admet pour équation cartésienne :

a. $3x-4y+7=0$
b. $4x+3y+1=0$
c. $3x-4y-1=0$
d. $4x+3y+7=0$

$\quad$

Correction Question 2

On a $\vect{AB}\begin{pmatrix}4\\3\end{pmatrix}$. Une équation de la droite $\Delta$ est donc de la forme $4x+3y+c=0$.
Le point $C(-1;1)$ appartient à cette droite. Ainsi :
$-4+3+c=0 \ssi c=1$
Une équation de la droite $\Delta$ est donc $4x+3y+1=0$.

Réponse b

$\quad$

[collapse]

$\quad$

Question 3

Dans l’intervalle $\left[0;\dfrac{\pi}{2}\right]$, l’unique solution de l’équation $2\cos(x+\pi)+1=0$ est :

a. $\dfrac{\pi}{3}$
b. $-\dfrac{5\pi}{3}$
c. $\dfrac{\pi}{6}$
d. $\dfrac{2\pi}{3}$

$\quad$

Correction Question 3

$\begin{align*} 2\cos(x+\pi)+1=0&\ssi -2\cos(x)+1=0\\
&\ssi \cos(x)=\dfrac{1}{2}\end{align*}$

Donc, dans l’intervalle $\left[0;\dfrac{\pi}{2}\right]$, la solution est $\dfrac{\pi}{3}$.

Réponse a

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

On considère la fonction $f$ définie et dérivable sur $\R$ par $f(x)=\dfrac{\e^x}{1+\e^x}$.
La fonction dérivée $f’$ de la fonction $f$ est définie par :

a. $f'(x)=\dfrac{\e}{1+\e}$
b. $f'(x)=\dfrac{\e^x}{\left(1+\e^x\right)^2}$
c. $f'(x)=1$
d. $f'(x)=\dfrac{-\e^x}{\left(1+\e^x\right)^2}$

$\quad$

Correction Question 4

Pour tout réel $x$ on a :
$\begin{align*} f'(x)&=\dfrac{\e^x\left(1+\e^x\right)-\e^x\times \e^x}{\left(1+\e^x\right)^2} \\
&=\dfrac{\e^x}{\left(1+\e^x\right)^2}\end{align*}$

Réponse a

$\quad$

[collapse]

$\quad$

Question 5

On considère la fonction $f$ définie sur $\R$ par : $f(x)=-0,5(x+2)^2+4,5$.
On peut affirmer que :

a. Le tableau de variations de la fonction $f$ est donné ci-dessous:

b.
La courbe représentative de la fonction $f$ admet un sommet de coordonnées $(4,5; -2)$.
c. Le signe de $f(x)$ est donné ci-dessous :

d. La fonction $f$ admet un minimum en $-2$ égal à $4,5$

$\quad$

Correction Question 5

On a $f(x)=-0,5\left(x-(-2)\right)^2+4,5$
Le coefficient principal est $a=-0,5<0$. La fonction $f$ admet donc un maximum dont l’abscisse est $-2$. On exclut donc les réponses a.b., et d.

Réponse c

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence